Схема тела и система внутреннего представления. Выработка двигательных навыков. Нарушения схемы тела при корковых поражениях

Движения (включая речь и письмо) – главное средство взаимодействия организма человека с окружением. В этом взаимодействии рефлекторные ответы, побуждаемые стимулами внешней среды, составляют лишь часть двигательной активности; другая ее часть – это активность, инициируемая «изнутри». Мозг не просто отвечает на стимулы, поступающие извне, он находится в постоянном диалоге со средой, причем инициатива в нем принадлежит именно мозгу. Вопрос о том, как организован диалог между центральной нервной системой (ЦНС) и внешним миром, занимал и продолжает занимать представителей разных наук. Можно с уверенностью сказать, что этот вопрос является одним из главных и для психологии.

^ 1. ОБЩИЕ СВЕДЕНИЯ О НЕРВНО-МЫШЕЧНОЙ СИСТЕМЕ

Понять принципы работы системы управления невозможно, не зная особенностей строения объекта управления. Применительно к движениям животных и человека объектом управления является опорно-двигательный аппарат. Своеобразие скелетно-мышечной системы заключается в том, что она состоит из большого количества звеньев, подвижно соединенных в суставах, которые допускают поворот одного звена относительно другого. Суставы могут позволять звеньям поворачиваться относительно одной, двух или трех осей, т.е. обладать одной, двумя или тремя степенями свободы. Общее число степеней свободы скелета человека превышает 200.

^ Скелетные мышцы представляют собой очень своеобразные двигатели, которые преобразуют химическую энергию непосредственно в механическую работу и теплоту. В связи с особенностями молекулярных механизмов сокращения, которые сейчас довольно хорошо известны, развитие силы автоматически сопровождается изменениями упругости и вязкости мышечного волокна. Кроме того, напряжение волокна зависит от его длины (угла в суставе) и от скорости его удлинения или укорочения. Как же нервная система управляет мышцей? Один двигательный нейрон (мотонейрон) иннервирует не всю мышцу, а лишь небольшую часть составляющих ее волокон. Эти волокна не обязательно соседствуют друг с другом, они рассредоточены по мышце и между ними, как правило, расположены волокна, управляемые другими мотонейронами. Мотонейрон и группа иннервируемых им мышечных волокон образуют двигательную единицу (ДЕ).

В ДЕ может входить от 10–15 (в наружных глазных мышцах) до многих сот мышечных волокон в крупных мышцах конечностей. Мелкие мышцы кисти могут насчитывать всего 30–40 ДЕ, а в двуглавой мышце плеча более 700 ДЕ. Силу мышцы можно увеличивать двумя способами: повышением частоты нервных импульсов, поступающих к каждой из ДЕ, и вовлечением новых двигательных единиц (рекрутированием). Двигательные единицы одной мышцы неодинаковы. В зависимости от скорости сокращения и устойчивости к утомлению различают медленные ( S) и быстрые ( F) двигательные единицы, которые, в свою очередь, подразделяются на устойчивые к утомлению ( FR) и быстроутомляемые ( FF). Порядок рекрутирования ДЕ в обычных условиях определяется размерами их мотонейронов. Первыми вовлекаются мотонейроны меньших размеров, т.е. активируются медленные ДЕ, развивающие небольшую силу. При увеличении уровня возбуждения рекрутируются быстрые ДЕ, развивающие большую силу. Все это дает возможность очень точной градации двигательного ответа, но одновременно усложняет управление.

2. ПРОПРИОЦЕПЦИЯ

Для успешной реализации движений необходимо, чтобы управляющие этими движениями центры в любой момент времени располагали информацией о положении звеньев тела в пространстве и о том, как протекает движение. В то же время движения являются мощным средством получения информации об окружающем мире. Некоторые виды сенсорной информации, например осязательная (гаптическое чувство) и зрительная, вообще могут быть получены только посредством определенных движений (соответственно, кисти и пальцев или глаз). Таким образом, связь между сенсорикой и моторикой очень тесна. По образному выражению Н.А. Бернштейна, «в организме все моторы осенсорены, а сенсоры омоторены».

Особое значение для управления движениями имеют сигналы двух типов мышечных рецепторов – мышечных веретен и сухожильных органов Гольджи. В каждой мышце человека можно встретить группы более тонких и коротких, чем остальные, мышечных волокон, заключенных в соединительнотканную капсулу длиной в несколько миллиметров и толщиной в несколько десятков микрон. Из-за своей формы эти образования получили название «мышечные веретена», а заключенные в капсулу мышечные волокна называются «интрафузальными» (внутриверетенными).

Мышечные веретена – это сложные образования, имеющие как афферентную, так и эфферентную иннервацию. Толстое афферентное волокно группы Iа, проникая внутрь капсулы веретена, ветвится, и его окончания обвивают в виде спиралей центральную часть интрафузальных волокон. Эти окончания называют первичными. Многие веретена иннервируются также одним или несколькими волокнами группы II, а их окончания располагаются к периферии от первичных окончаний и называются вторичными окончаниями.

Оба типа окончаний механочувствительны и активируются при растяжении мышцы. При этом частота импульсов, поступающих в мозг от первичных окончаний, зависит от амплитуды и скорости растяжения, а вторичные окончания чувстительны лишь к величине растяжения. Чувствительность афферентов Iа и II может регулироваться путем изменения жесткости интрафузальных мышечных волокон. Такие изменения происходят под влиянием тонких (группа g) эфферентных двигательных волокон, идущих к веретену и являющихся аксонами g-мотонейронов. Различают два вида g- волокон, которые могут изменять чувствительность афферентов к величине растяжения и к скорости независимо (соответственно g-статические и g-динамические волокна).

В отличие от веретен, расположенных параллельно мышечным волокнам, сухожильные органы Гольджи располагаются последовательно в месте перехода мышечных волокон в сухожилие. Эти рецепторы являются специализированными окончаниями толстых афферентных волокон первой группы (Ib), и частота их разрядов пропорциональна развиваемой мышцей силе.

В суставных капсулах, внутрисуставных и внесуставных связках имеются механорецепторы типа Руффини, активирующиеся при движениях в суставе, главным образом вблизи его крайних положений. В мышце также очень много свободных нервных окончаний (группы III и IV). Все перечисленные ранее типы рецепторов обеспечивают так называемую «проприоцептивную чувствительность», снабжая ЦНС информацией о состоянии опорно-двигательного аппарата. Информацию о состоянии собственного тела могут давать также и другие виды рецепторов, формально не относящихся к проприоцептивным (рецепторы глубокой чувствительности, кожные рецепторы в области суставов и т.д.).

^ 3. ЦЕНТРАЛЬНЫЕ АППАРАТЫ УПРАВЛЕНИЯ ДВИЖЕНИЯМИ

В управлении движениями участвуют практически все отделы ЦНС – от спинного мозга до коры больших полушарий.

У животных спинной мозг может осуществлять довольно обширный класс функций, вплоть до спинального шагания (Ч. Шеррингтон), однако у человека на спинальном уровне протекают лишь простейшие координации (реципрокное торможение мышц-антагонистов, флексорный рефлекс и др.). Нервные механизмы ствола мозга существенно обогащают двигательный репертуар, обеспечивая правильную установку тела в пространстве за счет шейных и лабиринтных рефлексов (Р. Магнус) и нормального распределения мышечного тонуса. Важная роль в координации движений принадлежит мозжечку. Такие качества движения, как плавность, точность и необходимая сила реализуются с участием мозжечка путем регуляции временных, скоростных и пространственных характеристик движения.

Животные с удаленными полушариями, но с сохраненным стволом мозга по координации движений почти неотличимы от интактных. Полушария мозга (кора и базальные ганглии) обеспечивают наиболее тонкие координации движений – двигательные реакции, приобретенные в ходе индивидуальной жизни. Осуществление этих реакций базируется на рефлекторном аппарате мозгового ствола и спинного мозга, функционирование которого многократно обогащается деятельностью высших отделов ЦНС.

По мере филогенетического развития степень и форма участия разных отделов мозга в управлении двигательными функциями существенно менялись. У человека двигательные функции достигли наивысшей сложности в связи с переходом к прямостоянию и прямохождению (что осложнило задачу поддержания равновесия), специализацией передних конечностей для совершения трудовых и других особо тонких движений, использованием двигательного аппарата для коммуникации (речь, письмо). В управление движениями человека включены высшие формы деятельности мозга, связанные с сознанием, что дало основание называть соответствующие движения «произвольными».

Результаты исследований разных классов движений позволили Н.А. Бернштейну [Бернштейн, 1947] сформулировать общие представления о многоуровневой иерархической системе координации движений. В соответствии с ними система управления движениями состоит из следующих уровней: А – уровень палеокинетических регуляций, он же руброспинальный уровень центральной нервной системы; В – уровень синергий, он же таламо-паллидарный уровень; С – уровень пространственного поля, он же пирамидно-стриарный уровень; D – уровень действий (предметных действий, смысловых цепей и т.п.), он же теменно-премоторный уровень. Остановимся кратко на характеристике первых трех уровней.

Уровень А. Это довольно древний уровень, который управляет, главным образом, мускулатурой туловища и шеи. Управляемые им движения – плавные, выносливые, как бы смесь равновесия и движения. Уровень А обеспечивает тонус всей мускулатуры. Он может довольно тонко управлять возбудимостью спинальных структур, обеспечивая, в частности, реципрокную иннервацию мышц-антагонистов. Действия этого уровня полностью непроизвольны.

Уровень В. Уровень синергий и штампов, или таламо-паллидарный уровень. Движения этого уровня отличаются обширностью вовлекаемых в синергию мышц и характеризуются наклонностью к стереотипам, периодичности. Ведущая афферентация – проприоцепторика скоростей и положений, к которой присоединяется комплекс экстероцепторики – дифференцированная чувствительность прикосновения, укола, трения (болевая и температурная, с присущими этим рецепциям точными «местными знаками»). В обобщенном виде это афферентация собственного тела.

Уровень С. Уровень пространственного поля, пирамидно-стриарный. Ведущая афферентация этого уровня – синтетическое пространственное поле. Пространственное поле – это восприятие и владение внешним окружающим пространством. Это поле обширно, простирается вокруг нас на большие расстояния. Оно однородно (гомогенно) и, что очень существенно, – несмещаемо. Наряду с этими свойствами, Н.А. Бернштейн подчеркивал такое важнейшее свойство пространственного поля, как его метричность и геометричность, проявляющиеся в соблюдении геометрической формы и геометрического подобия. Пространство уровня С заполнено объектами (с их формой, размерами и массой) и силами, исходящими от этих объектов и действующими между ними.

Важнейшим качеством многоуровневой системы управления движениями является не столько соподчинение иерархически устроенных уровней, сколько сложное разделение труда. Такое разделение обусловлено, с одной стороны, анатомическим строением этой системы, состоящей из эволюционно различных структур мозга, которые до определенной степени сохранили специфику своего функционирования, с другой стороны – необычайно сложным устройством исполнительного аппарата, его огромной размерностью. Другая особенность функционирования этой системы состоит в разделении упомянутых уровней на ведущий и фоновые (в зависимости от текущей двигательной задачи и условий ее реализации).

^ 4. ДВИГАТЕЛЬНЫЕ ПРОГРАММЫ

Управление движениями немыслимо без согласования активности большого количества мышц. Характер этого согласования зависит от двигательной задачи. Так, если нужно взять стакан воды, то ЦНС должна располагать информацией о положении стакана относительно тела и об исходном положении руки. Однако чтобы движение было успешным, кисть заранее раскрылась на величину, соответствующую размеру стакана, чтобы сгибатели пальцев сжимали стакан с силой, достаточной для предотвращения проскальзывания, чтобы приложенная сила была достататочной для плавного подъема, но не вызывала резкого отрыва, чтобы ориентация стакана в кисти после захвата все время была вертикальной. Таким образом, чтобы реализация движения соответствовала двигательной задаче, необходимы не только данные о пространственных соотношениях, но и сведения о свойствах объекта манипулирования. Многие из этих сведений не могут быть получены в ходе самого движения посредством обратных связей, а должны быть предусмотрены на этапе планирования. Следовательно, для осуществления движения должна быть сформирована двигательная программа. Двигательную или центральную программу рассматривают как заготовленный набор базовых двигательных команд, а также набор готовых корректирующих подпрограмм, обеспечивающих реализацию движения с учетом текущих афферентных сигналов и информации, поступающей от других частей ЦНС.

Зарождение побуждения к движению связано с активностью подкорковых и корковых мотивационных зон. Замысел движения формируется в ассоциативных зонах коры. Далее происходит формирование программы движения с участием базальных ганглиев и мозжечка, действующих на двигательную кору через ядра таламуса. За реализацию программы отвечает двигательная кора и нижележащие стволовые и спинальные двигательные центры.

Предполагается, что двигательная память содержит обобщенные классы двигательных программ, из числа которых в соответствии с двигательной задачей выбирается нужная. Программа модифицируется применительно к ситуации: однотипные движения могут выполняться быстрее или медленнее, с большей или меньшей амплитудой. Интересно, что одна и та же программа может быть реализована разными наборами мышц. Так, почерк человека сохраняет характерные черты при письме правой и левой рукой и даже карандашом, зажатым в зубах или прикрепленным к носку ботинка. Такой межконечностный перенос навыка возможен потому, что система управления движениями является многоуровневой (уровень планирования движения и уровень его исполнения в ней не совпадают). Действительно, произвольное движение планируется в терминах трехмерного евклидового пространства. Для исполнения этого плана необходимо перевести линейные перемещения в соответствующие угловые переменные (изменения суставных углов), определить, какие мышечные моменты необходимы для этих угловых перемещений и, наконец, сформировать двигательные команды, которые вызовут активацию мышц, дающую необходимые значения моментов.

Двигательная программа может быть реализована различными способами. В простейшем случае ЦНС посылает к мышцам заранее сформированную последовательность команд, не подвергающуюся во время реализации никакой коррекции. В этом случае говорят о разомкнутой системе управления. Подобное управление используется при осуществлении быстрых, так называемых «баллистических» движений. Чаще всего ход осуществления движения сравнивается с его планом на основе сигналов от многочисленных рецепторов, и в реализуемую программу вносятся нужные коррекции. Это замкнутая система управления с обратными связями. Однако и такое управление имеет недостатки. В связи с относительно малыми скоростями проведения сигналов, значительными задержками в центральном звене обратной связи и значительным временем, необходимым для развития усилия мышцей, коррекция движения по сигналу обратной связи может запаздывать. Поэтому во многих случаях целесообразно реагировать не на отклонение от плана движения, а на само внешнее возмущение еще до того, как оно успело вызвать отклонение. Такое управление называют управлением по возмущению.

Другим способом уменьшения влияния задержек является антиципация. Во многих случаях ЦНС способна предусмотреть в двигательной программе появление возмущений еще до их возникновения. Примечательно, что эта упреждающая «позная» активность (антиципация) осуществляется автоматически с очень короткими центральными задержками. Роль упреждающей активности в стабилизации положения звеньев тела иллюстрирует простой пример. Если официант удерживает на ладони вытянутой руки поднос с бутылкой шампанского и рюмками, а другой человек внезапно снимет бутылку с подноса, то рука резко подпрыгнет вверх с соответствующими последствиями. Если же он сам снимет бутылку свободной рукой, то рука с подносом останется на прежнем уровне.

^ 5. КООРДИНАЦИЯ ДВИЖЕНИЙ

Представление о координации движений возникло на основе наблюдений больных, которые в силу разных причин не в состоянии плавно и точно осуществлять движения, легко доступные здоровым людям. Координацию можно определить как способность реализовать движение в соответствии с его замыслом. Даже для простейшего движения – движения в суставе с одной степенью свободы – необходима согласованная работа как минимум двух мышц агониста и антагониста. В действительности на каждую степень свободы, как правило, приходится больше одной пары мышц. При этом многие мышцы являются двухсуставными, т.е. действуют не на один, а на два сустава. Именно поэтому, например, изолированное сгибание пальцев руки невозможно без одновременной активации разгибателей кисти, препятствующих действию сгибателей пальцев в лучезапястном сочленении.

Формы участия мышц в осуществлении двигательных актов весьма многообразны. Анатомическая классификация мышц (например, сгибатели и разгибатели, синергисты и антагонисты) не всегда соответствует их функциональной роли в движениях. Так, некоторые двухсуставные мышцы в одном суставе осуществляют сгибание, а в другом – разгибание. Антагонист может возбуждаться одновременно с агонистом для обеспечения точности движения, и его участие помогает выполнить двигательную задачу. В связи с этим в каждом конкретном двигательном акте можно выделить основную мышцу (основной двигатель), вспомогательные мышцы (синергисты), антагонисты и стабилизаторы (мышцы, которые фиксируют не участвующие в движении суставы). Мышцы не только сокращаются, приводя в движение соответствующие звенья: антагонисты и стабилизаторы часто функционируют в режиме растяжения под нагрузкой, при этом поглощая и рассеивая энергию. Этот режим используется для плавного торможения движений и амортизации толчков. При поддержании позы многие мышцы работают в режиме, при котором их длина практически не изменяется.

На конечный результат движения влияют не только силы, развиваемые мышцами, но и силы немышечного происхождения. К ним относятся силы инерции, создаваемые массами звеньев тела, которые вовлекаются в движение, а также силы реакции, возникающие в кинематических цепях при смещении любого из звеньев. Движение смещает различные звенья тела друг относительно друга и меняет конфигурацию тела, а следовательно, по ходу движения изменяются моменты упомянутых сил. Вследствие изменения суставных углов меняются и моменты мышечных сил. На ход движения влияет и гравитация: моменты сил веса тоже изменяются в процессе движения из-за изменения ориентации звеньев относительно вектора силы тяжести. В практической деятельности человек вступает во взаимодействие с предметами внешнего мира, различными инструментами, перемещаемыми грузами и т.д.; в процессе этого взаимодействия ему приходится преодолевать силы тяжести, упругости, трения, вязкости и инерции. Силы немышечного происхождения вмешиваются в процесс движения и делают необходимым непрерывное согласование с ними деятельности мышечного аппарата. Кроме того, необходимо нейтрализовывать действие непредвиденных помех, которые могут возникать во внешней среде, и оперативно исправлять допущеные в ходе реализации движения ошибки.

Наряду с этими помехами, возникающими при осуществлении движения, существует еще одна принципиальная сложность, возникающая еще на этапе планирования движения. Речь идет о так называемой проблеме избыточности степеней свободы двигательного аппарата. Для того чтобы в трехмерном пространстве достичь любой заданной точки (в пределах длины конечности), достаточно иметь двухзвенную конечность с двумя степенями свободы в проксимальном суставе («плече») и одной степенью свободы в дистальном («локтевом»). На самом деле конечности имеют большее количество звеньев и число степеней свободы. Именно поэтому, если бы мы захотели решить геометрическую задачу о том, как должны изменяться углы в суставах, для того чтобы рабочая точка конечности переместилась из одного заданного положения в пространстве в другое, то оказалось бы, что эта задача имеет бесконечное множество решений.

Для того чтобы найти однозначное решение задачи управления для кинематической цепи, необходимо исключить избыточные для данного движения степени свободы. Этого можно достичь двумя способами: а) можно зафиксировать избыточные степени свободы путем одновременной активации антагонистических групп мышц (коактивация) и б) можно связать движения в разных суставах определенными соотношениями, уменьшив таким образом количество независимых переменных, с которыми должна иметь дело ЦНС. Такие устойчивые сочетания одновременных движений в нескольких суставах, направленных на достижение единой цели, получили название синергий. Синергии чаще всего используются в относительно стереотипных, часто используемых движениях, таких, как локомоция, некоторые трудовые движения и др. Вместе с тем двигательные синергии не являются синонимами двигательных стереотипов – для них характерна определенная степень адаптивности.

^ 6. ТИПЫ ДВИЖЕНИЙ

Движения человека очень разнообразны, однако все это разнообразие можно свести к небольшому количеству основных типов активности: обеспечение позы и равновесия, локомоция и произвольные движения.

Поддержание позы у человека обеспечивается теми же фазическими мышцами, что и движения, а специализированные тонические мышцы отсутствуют. Отличие заключается в том, что при «позной» деятельности мышц сила их сокращения обычно невелика, режим близок к изометрическому, а длительность сокращения значительна. В «позный» или постуральный режим работы мышц вовлекаются преимущественно низкопороговые, медленные и устойчивые к утомлению двигательные единицы.

Одна из основных задач «позной» активности – удержание нужного положения звеньев тела в поле силы тяжести (удержание головы от свисания, голеностопных суставов от тыльного сгибания при стоянии и др.). «Позная» активность может быть направлена и на фиксацию суставов, не принимающих участия в осуществляемом движении. В трудовой деятельности удержание позы бывает связано с преодолением внешних сил.

Типичный пример позы – стояние человека. Сохранение равновесия при стоянии возможно в том случае, если проекция центра тяжести тела находится в пределах опорного контура. При стоянии вертикаль, опущенная из общего центра тяжести тела, проходит несколько впереди оси голеностопных и коленных суставов и несколько позади оси тазобедренных суставов. Обеспечение устойчивости достигается активной работой многих мышц туловища и ног, причем развиваемая этими мышцами сила невелика. Максимальное напряжение при стоянии развивают мышцы голеностопного сустава, а минимальное – мышцы коленного и тазобедренного суставов. У большинства мышц активность поддерживается на более или менее постоянном уровне. Другие мышцы активируются периодически. Последнее связано с небольшими колебаниями центра тяжести тела как в сагиттальной, так и во фронтальной плоскости, постоянно происходящими при стоянии. Мышцы голени противодействуют отклонениям тела, возвращая его в вертикальное положение. Таким образом, поддержание позы – это активный процесс, осуществляющийся, как и движение, с участием обратных связей от рецепторов. В поддержании вертикальной позы участвуют зрение и вестибулярный аппарат. Важную роль играет и проприорецепция. Поддержание равновесия при стоянии – только частный случай «позной» активности. Кроме того, механизмы поддержания равновесия используются также при локомоции и повседневной двигательной деятельности. Например, быстрое движение руки может вызвать нарушение равновесия. Обычно этого не происходит, потому что произвольному движению предшествуют такие изменения в системе регуляции позы, которые заранее изменяют распределение «позной» активности мышц и тем самым обеспечивают нейтрализацию последствий движения. Это – так называемые «позные» компоненты произвольного движения.

К понятию позы примыкает понятие мышечного тонуса. Термин «тонус» многозначен, в применении к скелетным мышцам им обозначают комплекс явлений. В покое мышечные волокна обладают тургором, определяющим их сопротивление давлению и растяжению. Это составляет тот компонент тонуса, который не связан со специфической нервной активацией мышцы, обусловливающей ее сокращение. Однако в естественных условиях большинство мышц обычно в некоторой степени активируются нервной системой, в частности, для поддержания позы («позный» тонус). Другой важный компонент тонуса – рефлекторный, определяющийся рефлексом на растяжение. У человека он выявляется по сопротивлению растяжению мышцы при пассивном повороте звена конечности в суставе.

Наиболее распространенной формой локомоции человека (локомоция – активное перемещение в пространстве на расстояния, значительно превышающие характерные размеры тела) является ходьба. Она относится к циклическим двигательным актам, при которых последовательные фазы движения периодически повторяются.

Для удобства изучения и описания цикл ходьбы подразделяют на фазы: для каждой ноги выделяют фазу опоры, в течение которой нога контактирует с опорой, и фазу переноса, когда нога находится в воздухе. Фазы опоры двух ног частично перекрываются по времени, образуя двухопорный период. В двухопорный период происходит перенос нагрузки с находящейся на опоре ноги, которая находится позади, на поставленную на опору переднюю ногу. Центр массы тела человека при ходьбе совершает сложные пространственные движения. Амплитуда этих движений составляет около 5 см в направлении вверх-вниз, и 2–4 см в боковом направлении. Давление на опору во время ходьбы непостоянно. Оно превышает вес тела во время наступания и отталкивания от опоры и меньше веса тела в середине одноопорного периода. Сопоставление изменений межзвенных углов в тазобедренном, коленном и голеностопном суставах с распределением по времени активности мышц приводит к выводу, что движение ноги в фазу переноса в значительной степени осуществляется за счет сил инерции (подобно двухзвенному маятнику).

Повторяемость параметров движений в последовательных циклах при ходьбе не абсолютная: они обладают некоторой вариативностью. Наименьшая вариативность у кинематической картины ходьбы, наибольшая – в работе мышц, проявляющаяся в изменениях электромиограмм от цикла к циклу. Это отражает корригирующую деятельность ЦНС, которая в каждом шаге вносит в стандартную иннервационную структуру ходьбы поправки, необходимые для обеспечения относительного постоянства ее кинематики.

Бег отличается от ходьбы тем, что нога, которая находится позади, отталкивается от опоры раньше, чем другая нога опускается на нее. В результате в беге имеется безопорный период – период полета. В беге, благодаря большим скоростям перемещения, более значительную роль играют баллистические компоненты движения – перемещение звеньев ноги по инерции.

Произвольными движениями в широком смысле слова могут быть названы самые разные движения, совершаемые как в процессе труда, так и в повседневной жизни. У человека основным рабочим органом является рука, причем для выполнения двигательной задачи определяющим обычно является положение кисти, которая должна в определенный момент оказаться в определенном месте пространства. Благодаря большому числу степеней свободы верхней конечности кисть может попасть в нужную точку по разным траекториям и при различных соотношениях углов в плечевом, локтевом и лучезапястном суставах. Это многообразие возможностей позволяет выполнять двигательную задачу, начиная движение из различных исходных поз, однако оно же ставит ЦНС перед задачей выбора одного варианта из многих.

В сложной картине работы мышц часто можно выделить устойчивые сочетания их активности, используемые в различных движениях. Это уже упоминавшиеся синергии, основанные на врожденных или выработанных в процессе опыта связях, которые, являясь устойчивыми компонентами движений, упрощают управление сложными двигательными актами и помогают преодолеть избыточность количества мышц и числа степеней свободы.

При совершении одного и того же, даже простого движения, организация мышечной деятельности в сильной степени зависит от вмешательства немышечных сил, в частности внешних по отношению к человеку. Так, при ударе молотком, когда к массе предплечья добавляется масса молотка, и, следовательно, увеличивается роль инерции, разгибание предплечья совершается по типу баллистического движения. Аналогичное по кинематике движение при работе напильником, когда основной внешней силой является трение, совершается путем непрерывной активности мышцы на протяжении всего разгибания. Если первое из этих двух движений является в основном предпрограммированным, то во втором велика роль обратных связей.

^ 7. ВЫРАБОТКА ДВИГАТЕЛЬНЫХ НАВЫКОВ

Совершенствование двигательной функции в онтогенезе происходит как за счет продолжающегося в первые годы после рождения созревания врожденных механизмов, участвующих в координации движений, так и в результате научения, т.е. формирования новых связей, которые ложатся в основу программ тех или иных конкретных двигательных актов. Координация новых непривычных движений имеет характерные черты, отличающие ее от координации тех же движений после обучения.

Ранее уже говорилось, что обилие степеней свободы в опорно-двигательном аппарате, влияние на результат движения сил тяжести и инерции осложняют выполнение любой двигательной задачи. На первых порах обучения ЦНС справляется с этими трудностями, нейтрализуя помехи с помощью дополнительных мышечных напряжений. Мышечный аппарат жестко фиксирует суставы, не участвующие в движении, и активно тормозит инерцию быстрых движений. Такой путь преодоления помех энергетически невыгоден и утомителен. Использование обратных связей еще несовершенно – коррекционные посылки, возникающие на их основе, несоразмерны и вызывают необходимость повторных дополнительных коррекций.

Мышцы-антагонисты даже тех суставов, в которых совершается движение, активируются одновременно: в циклических движениях мышцы почти не расслабляются. Кроме того, возбуждены также многие мышцы, не имеющие прямого отношения к данному двигательному акту. Движения, совершаемые в таких условиях, напряжены и неэстетичны (например, движения человека, впервые вышедшего на коньках на лед).

Как показал Н.А. Бернштейн, по мере обучения вырабатывается такая структура двигательного акта, при которой немышечные силы включаются в его динамику, становятся составной частью двигательной программы. Излишние мышечные напряжения при этом устраняются, движение становится более устойчивым к внешним возмущениям. На электромиограммах видна концентрация возбуждения мышц во времени и пространстве, периоды активности работающих мышц укорачиваются, а количество мышц, вовлеченных в работу, уменьшается. Это приводит к повышению экономичности мышечной деятельности, а движения становятся более плавными, точными и непринужденными.

Важную роль в обучении движениям играет рецепция, особенно проприоцепция. В процессе двигательного научения обратные связи используются не только для коррекции движения по его ходу, но и для коррекции программы следующего движения на основе ошибок предыдущего.

^ 8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ

В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.

Необходимость внутренних моделей для управления движениями связана со спецификой сенсомоторной системы.

1. Большинство рецепторов расположено на подвижных звеньях тела – следовательно, они собирают информацию в собственных локальных системах координат. Для того чтобы воспользоваться этой информацией, ее нужно преобразовать в единую систему координат или, как минимум, обеспечить возможность двухсторонних переходов.

2. Для управления движениями мозгу необходимы величины, которые не содержатся непосредственно в первичных сигналах рецепторов. К подобным величинам относятся такие, как длины кинематических звеньев, положения парциальных и общего центра масс. Кроме того, в первичных сенсорных сигналах не содержатся самые общие сведения о кинематической структуре тела: количестве и последовательности звеньев, числе степеней свободы и объеме движений в суставах.

3. Ход выполнения движения оценивается путем сравнения реальной афферентации с ожидаемой (эфферентная копия). Для многозвенных кинематических цепей, оснащенных рецепторами разных модальностей, эфферентная копия оказывается достаточно сложной, и для ее построения также требуется внутренняя модель.

Вывод о наличии в ЦНС модели собственного тела был впервые сделан на основе клинических наблюдений фантома ампутированных, известного с глубокой древности. Человек, утративший конечность, в течение длительного времени субъективно продолжает ощущать ее присутствие. Речь идет не о редком феномене, проявляющимся в исключительных ситуациях: фантом после ампутации наблюдается более чем в 90% случаев. Описаны случаи фантома у детей и при врожденном отсутствии конечности. Это означает, что по меньшей мере некоторые элементы внутренней модели или, как ее называют, «схемы тела», относятся к врожденным.

Характерные черты ампутационного фантома могут быть воспроизведены на здоровом человеке при выключенном зрении, в условиях блокады проведения импульсов, поступающих в мозг от кожных, суставных и мышечных рецепторов руки по чувствительным нервам. Блокировать чувствительность можно, вводя анестетик в плечевое сплетение или временно останавливая кровоток в руке (ишемическая деафферентация). Оказалось, что в этих условиях наблюдается своего рода «экспериментальный фантом», рассогласование реального и воспринимаемого положения конечности, достигающее порой значительных величин [Гурфинкель, Левик, 1991а]. Когда испытуемого просили совершить движение ишемизированной рукой, он планировал его, исходя из того, как в данный момент рука была представлена в системе внутреннего представления, а не из ее реального положения.

В условиях ишемической деафферентации, несмотря на отсутствие проприоцептивного притока, не возникает ощущения «исчезновения» руки либо ее дистальных звеньев. Это означает, что в ЦНС имеется своего рода список звеньев тела, составляющие которого обладают консерватизмом и устойчивостью к разного рода изменениям периферии. Сохранение кинестатических ощущений можно объяснить тем, что осознание положения кинематических звеньев происходит не на основе «сырой» афферентации, а на базе сложной информационной структуры – «схемы конечности», ее внутренней модели. При изменении или резком снижении афферентации нарушается «привязка» этой модели к физическому пространству, может наблюдаться и дрейф отдельных ее параметров, но сама модель сохраняется и служит базой для восприятия конечности и планирования ее движений.

Другим источником представлений о схеме тела явились клинические наблюдения, показывающие, что некоторые формы церебральной патологии, особенно поражения правой теменной доли, приводят к возникновению стойких искаженных представлений о собственном теле и окружающем пространстве. Среди этих нарушений встречаются одностороннее игнорирование одной конечности или половины тела на пораженной стороне (контралатеральной по отношению к пораженному полушарию); аллостезия – восприятие стимулов, приложенных к больной стороне, как приложенных к здоровой стороне, отрицание дефекта, иллюзорные движения пораженных конечностей, отрицание принадлежности больному пораженных конечностей; ослабление осознания частей тела (асхематия и гемидеперсонализация); фантомные дополнительные конечности.

Разнообразие клинических проявлений, обусловленных нарушениями схемы тела, указывает на сложность выполняемых ею функций. Кроме того, видно, что все многообразие нарушений распадается на три группы: а) нарушение представлений о принадлежности частей тела; б) нарушение правильных представлений о форме, размерах и положении частей тела и в) иллюзорные движения.

С точки зрения схемы тела представляют интерес и исследования так называемых «измененных состояний сознания», возникающих у здоровых людей под действием галлюциногенов, гипноза, сенсорной депривации, во сне и т.д. Из всего многообразия феноменов измененного состояния сознания выделяют группу этиологически независимых, т.е. не зависящих от природы агента, вызвавшего такое состояние. Треть из этих феноменов имеет непосредственное отношение к схеме тела и моторике. Люди, испытавшие измененные состояния сознания, часто сообщают что-либо из далее перечисленного: граница между телом и окружением была размытой; опора представлялась качающейся; конечности казались больше, чем обычно; окружающие предметы были больше, чем обычно; тело исчезало; тело представлялось плавающим; окружение казалось нереальным; «я» и окружение представлялись единым целым; терялась возможность управлять движениями своего тела; части тела больше им не принадлежали. Из этого перечня видно, что и здесь можно выделить нарушения, связанные с восприятием целостности тела и его границ, размеров отдельных звеньев и нарушениями двигательных возможностей организма. В сравнении с клиническими проявлениями, характерными для органических поражений мозга, здесь можно выделить еще одну сторону, связанную с нарушениями взаимоотношений между телом и внешним пространством: плавание, качающаяся опора и др. (т.е. с трудностями в формировании системы отсчета).

Но, возможно, не стоит слишком сильно расширять перечень функций, выполняемых схемой тела, а отнести к ним только описание таких стабильных характеристик тела, как разделение на туловище и присоединенные к нему голову и конечности, последовательность и длины звеньев конечностей, число степеней свободы и объемы движений в суставах, расположение мышц и основных рецептивных полей. Без этого описания невозможен ни анализ поступающих от многочисленных рецепторов сигналов о теле (соместезия), ни реализация моторных программ. Задачу описания текущего положения тела и его конфигурации в рамках соответствующей системы отсчета целесообразно отнести к функциям системы внутреннего представления собственного тела. Такое разделение – это не просто вопрос терминологии, в его пользу говорит тесная связь между представлением собственного тела и окружающего (экстраперсонального) пространства, включая как общие закономерности формирования представления о теле и ближнем пространстве, так и во многом общий анатомический субстрат. Последнее подтверждается тем, что при поражениях определенных структур ЦНС нарушения восприятия пространства и собственного тела сопутствуют друг другу.

Подавляющая часть наших движений пространственно ориентированы, т.е. направлены на достижение определенной точки в пространстве. Пространственно ориентированной является и поза (относительно опоры, гравитационной вертикали и структуры зрительного окружения). Именно поэтому управление позой и движениями требует системы отсчета, в которой представлено как тело, так и окружающее пространство. Из физики известно, что всякое движение относительно, поэтому говорить о движении имеет смысл только в том случае, если указано, в какой системе отсчета это движение происходит. В последнее время изучением системы внутреннего представления и системами отсчета начали заниматься и нейрофизиологи. В результате появилось много экспериментальных данных, свидетельствующих о том, что система внутреннего представления пространства реально существует и доступна изучению. Например, установлено, что можно мысленно манипулировать трехмерными объектами так же, как и их реальными физическими прототипами. Система внутреннего представления работает не просто с двухмерной проекцией предмета, аналогичной сетчаточному изображению, а с его трехмерной моделью. Это следует из опытов, в которых на экране человеку предъявляли два идентичных или зеркальных предмета в разной ориентации. Для того чтобы установить, одинаковы ли показанные предметы, мозг конструировал необходимый мысленный путь для преобразования (поворот или перемещение). Выбирался не случайный, а простейший и кратчайший путь. Время мысленного манипулирования линейно зависело от угла поворота, необходимого для того, чтобы привести объекты к одной ориентации. Индикатором процессов внутреннего моделирования двигательных актов может быть усиление локального мозгового кровотока в двигательных центрах мозга, обнаруженное при многих типах мысленных движений. Так, избирательная активация кровотока в области классических речевых центров левого полушария наблюдается при невокализованной речи, например счете про себя.

В зависимости от того, выполняются ли движения относительно собственного тела или относительно системы координат, связанной с экстраперсональным пространством, изменяется активность нейронов в различных областях мозга.

Своеобразным клиническим подтверждением существования системы внутреннего представления служит «геминеглект», т.е. игнорирование пациентом половины своего тела и внешнего пространства (обычно левой) при поражениях правой теменной доли, несмотря на сохранность элементарных сенсорных и моторных функций. Геминеглект связывали с дефицитом внимания и нарушениями программирования движений, однако многие данные свидетельствуют о том, что дефект затрагивает именно систему внутреннего представления.

В классическом эксперименте пациента-миланца просили представить себя стоящим спиной к знаменитому собору в Милане и описать расположенную перед ним площадь. Пациент называл или рисовал только здания, находящиеся с правой стороны площади, игнорируя ее левую часть. Затем его просили представить себя стоящим на противоположной стороне площади лицом к собору и вновь описать открывающуюся панораму. Пациент опять описывал только правую половину площади, но при новой ориентации в сферу его внимания попадали здания, которые игнорировались в первом случае. Это означает, что внутренняя модель у пациента была полной, но он имел доступ только к одной половине этого представления, менявшейся в зависимости от ориентации его тела, т.е. от избранной системы отсчета. Таким образом, при операциях с внутренним представлением пространства проявлялся тот же дефект, что и при рассматривании реальных объектов.

Известные способы изучения системы внутреннего представления ориентированы главным образом на ее роль в восприятии. Однако в последнее время появились новые экспериментальные подходы, базирующиеся на традиционных методах физиологии движений, а не ориентированные исключительно на перцепцию и словесные отчеты. На осознаваемом уровне отражается лишь небольшая часть работы нервной системы при выполнении пространственно ориентированных действий. Поэтому можно полагать, что большинство интегративных действий, выполняемых внутренней моделью тела, протекает на подсознательном уровне. Примером таких действий могут служить описанные Р. Магнусом шейные и вестибулярные «позные» автоматизмы, участвующие в поддержании нормального положения тела и восстановлении нарушенного равновесия у животных. У здорового взрослого человека в состоянии покоя шейные влияния на мускулатуру туловища и конечностей незаметны, но выявляются на фоне тонических реакций, вызванных вибрационной стимуляцией мышечных рецепторов. У сидящего человека, стопы которого не имеют контакта с полом, вибрация ахилловых сухожилий вызывает двухстороннюю активацию четырехглавых мышц и разгибание ног в коленных суставах. Поворот головы относительно вертикальной оси сопровождается нарушением симметрии реакции: она усиливается на «затылочной» ноге и ослабляется на «подбородочной». Такая же реакция наблюдается в ответ на непроизвольный поворот головы при вибрации шейных мышц.

Известно, что вибрация сухожилия или брюшка мышцы с частотой, вызывающей активацию мышечных рецепторов растяжения, может приводить к возникновению локального тонического вибрационного рефлекса – сокращению мышцы, подвергающейся вибрации. В результате возникает движение соответствующего звена. Если его предотвратить с помощью жесткой фиксации, то тонический вибрационный рефлекс, как правило, не развивается, зато появляется иллюзия движения звена в направлении, противоположном тому, в котором происходило бы реальное движение в отсутствие фиксации. Так, вибрацией соответствующих шейных мышц можно вызвать поворот головы, а при ее фиксации в среднем положении при той же вибрации у испытуемых создавалась иллюзия поворота головы в противоположную сторону.

При иллюзорном повороте ассиметрия движения ног имела знак, соответствующий направлению иллюзии, причем она была выражена даже сильнее, чем при реальном повороте головы. Это показывает, что вибрационная стимуляция одних и тех же афферентов может оказывать прямо противоположное модулирующее влияние на тоническую активность мышц ног в зависимости от состояния системы внутреннего представления [Гурфинкель и др., 1991б].

Известен феномен изменения направления отклонения тела при гальванической вестибулярной пробе в зависимости от ориентации (поворота) головы. Оказалось, что сходный эффект можно получить и в том случае, когда вместо реального поворота головы вызывалась иллюзия такого поворота. Таким образом, «позные» автоматизмы модулируются внутренним представлением о конфигурации тела. Кроме того, система внутреннего представления должна включать также систему координат, в которой описываются ориентация и движение тела относительно внешнего пространства. В зависимости от ситуации и двигательной задачи организм может использовать систему отсчета, связанную с корпусом, с головой, с внешним пространством или с каким-либо подвижным объектом. Переход от одной системы координат к другой влияет не только на восприятие, но и на двигательные реакции, обычно относимые к автоматическим.

Так, медленные повороты корпуса относительно фиксированной в пространстве головы вызывают иллюзию движения головы относительно неподвижного корпуса. Это показывает, что система внутреннего представления склонна использовать систему координат, связанную с корпусом, и интерпретировать взаимный поворот головы и корпуса как вращение головы относительно неподвижного корпуса. Однако в условиях данного эксперимента можно вызвать переход от эгоцентрической системы координат (связанной с корпусом) к экзоцентрической (связанной с внешним пространством). Для этого испытуемого просили захватить рукой рукоятку, жестко закрепленную на массивном неподвижном столе. Информация о взаимном перемещении корпуса и рукоятки, а также априорное представление о том, что рукоятка несмещаема, приводили к переходу от эгоцентрической системы координат к экзоцентрической – у испытуемого появлялись ощущения поворотов корпуса, который ранее воспринимался неподвижным, соответственно исчезали и ощущения поворотов головы.

Переход от одной системы координат к другой подтверждался не только субъективным отчетом испытуемого, но и ярко выраженными изменениями реакций глазодвигательного аппарата. Если вначале амплитуда движения глаз в направлении иллюзорного поворота головы превосходила амплитуду поворотов корпуса, то после захвата рукоятки она уменьшалась в 3–4 раза [Гурфинкель, Левик, 1995].

Итак, нейронная модель тела, механизмы построения систем отсчета, набор базисных моторных автоматизмов и алгоритмов их согласования составляют основу, на которой формируется внутреннее представление о собственном теле и окружающем пространстве. Система внутреннего представления играет ведущую роль в задачах переработки сенсорной информации и реализации пространственно ориентированных движений. Реакции, которые на животных считаются классическими примерами рефлекторных «позных» автоматизмов, у человека в сильной степени определяются тем, как описывается взаимное положение головы, туловища и конечностей в этой системе. Такое описание требует определенной системы отсчета. Переход из одной системы координат в другую ведет к изменению интерпретации сенсорных сигналов и модификации двигательных реакций, возникающих в ответ на эти сигналы. Выбор системы отсчета во многом определяется априорными сведениями об объектах внешнего мира, с которыми человек поддерживает контакт (жесткость, несмещаемость и др.).

Движения человека очень разнообразны, однако все это разнообразие можно свести к небольшому количеству основных типов активности: обеспечение позы и равновесия, локомоция (активное перемещение в пространстве на расстояния, значительно превышающие характерные размеры тела) и произвольные движения.

Поддержание позы у человека обеспечивается теми же фазическими мышцами, что и движения, а специализированные тонические мышцы отсутствуют. Отличие заключается в том, что при «позной» деятельности мышц сила их сокращения обычно невелика, режим близок к изометрическому, а длительность сокращения значительна. В «позный», или постуральный, режим работы мышц вовлекаются преимущественно низкопороговые, медленные и устойчивые к утомлению двигательные единицы. Одна из основных задач «позной» активности - удержание нужного положения звеньев тела в поле силы тяжести (удержание головы от свисания, голеностопных суставов от тыльного сгибания при стоянии и др.). «Позная» активность может быть направлена и на фиксацию суставов, не принимающих участия в осуществляемом движении. В трудовой деятельности удержание позы бывает связано с преодолением внешних сил.

Типичный пример позы - стояние человека. Сохранение равновесия при стоянии возможно в том случае, если проекция центра тяжести тела находится в пределах опорного контура. При стоянии вертикаль, опущенная из общего центра тяжести тела, проходит несколько впереди оси голеностопных и коленных суставов и несколько позади оси тазобедренных суставов. Обеспечение устойчивости достигается активной работой многих мышц туловища и ног, причем развиваемая этими мышцами сила невелика. Максимальное напряжение при стоянии развивают мышцы голеностопного сустава, а минимальное - мышцы коленного и тазобедренного суставов. У большинства мышц активность поддерживается на более или менее постоянном уровне. Другие мышцы активируются периодически. Последнее связано с небольшими колебаниями центра тяжести тела как в сагиттальной, так и во фронтальной плоскости, постоянно происходящими при стоянии. Мышцы голени противодействуют отклонениям тела, возвращая его в вертикальное положение. Таким образом, поддержание позы - это активный процесс, осуществляющийся, как и движение, с участием обратных связей от рецепторов. В поддержании вертикальной позы участвуют зрение и вестибулярный аппарат. Важную роль играет и проприоцепция. Поддержание равновесия при стоянии - только частный случай «гюзной» активности. Кроме того, механизмы поддержания равновесия используются также при локомоции и повседневной двигательной деятельности. Например, быстрое движение руки может вызвать нарушение равновесия. Обычно этого не происходит, потому что произвольному движению предшествуют такие изменения в системе регуляции позы, которые заранее изменяют распределение «позной» активности мышц и тем самым обеспечивают нейтрализацию последствий движения. Это - так называемые «позные» компоненты произвольного движения.

К понятию позы примыкает понятие мышечного тонуса. Термин «тонус» многозначен, в применении к скелетным мышцам им обозначают комплекс явлений. В покое мышечные волокна обладают тургором, определяющим их сопротивление давлению и растяжению. Это составляет тот компонент тонуса, который не связан со специфической нервной активацией мышцы, обусловливающей ее сокращение. Однако в естественных условиях большинство мышц обычно в некоторой степени активируются нервной системой, в частности, для поддержания позы («позный» тонус). Другой важный компонент тонуса - рефлекторный, определяющийся рефлексом на растяжение. У человека он выявляется по сопротивлению растяжению мышцы при пассивном повороте звена конечности в суставе.

Наиболее распространенной формой локомоции человека является ходьба. Она относится к циклическим двигательным актам, при которых последовательные фазы движения периодически повторяются.

Для удобства изучения и описания цикл ходьбы подразделяют на фазы: для каждой ноги выделяют фазу опоры, в течение которой нога контактирует с опорой, и фазу переноса, когда нога находится в воздухе. Фазы опоры двух ног частично перекрываются по времени, образуя двухопорный период. В двухопорный период происходит перенос нагрузки с находящейся на опоре ноги, которая находится позади, на поставленную на опору переднюю ногу. Центр массы тела человека при ходьбе совершает сложные пространственные движения. Амплитуда этих движений составляет около 5 см в направлении вверх-вниз, и 2-4 см в боковом направлении. Давление на опору во время ходьбы непостоянно. Оно превышает вес тела во время наступания и отталкивания от опоры и меньше веса тела в середине одно-опорного периода. Сопоставление изменений межзвенных углов в тазобедренном, коленном и голеностопном суставах с распределением по времени активности мышц приводит к выводу, что движение ноги в фазу переноса в значительной степени осуществляется за счет сил инерции (подобно двухзвенному маятнику).

Повторяемость параметров движений в последовательных циклах при ходьбе не абсолютная: они обладают некоторой вариативностью. Наименьшая вариативность у кинематической картины ходьбы, наибольшая - в работе мышц, проявляющаяся в изменениях электромиограмм от цикла к циклу. Это отражает корригирующую деятельность ЦНС, которая в каждом шаге вносит в стандартную иннерваци-онную структуру ходьбы поправки, необходимые для обеспечения относительного постоянства ее кинематики.

Бег отличается от ходьбы тем, что нога, которая находится позади, отталкивается от опоры раньше, чем другая нога опускается на нее. В результате в беге имеется безопорный период - период полета. В беге, благодаря большим скоростям перемещения, более значительную роль играют баллистические компоненты движения - перемещение звеньев ноги по инерции.

Произвольными движениями в широком смысле слова могут быть названы самые разные движения, совершаемые как в процессе труда, так и в повседневной жизни. У человека бсновным рабочим органом является рука, причем для выполнения двигательной задачи определяющим обычно является положение кисти, которая должна в определенный момент оказаться в определенном месте пространства. Благодаря большому числу степеней свободы верхней конечности кисть может попасть в нужную точку по разным траекториям и при различных соотношениях углов в плечевом, локтевом и лучезапястном суставах. Это многообразие возможностей позволяет выполнять двигательную задачу, начиная движение из различных исходных поз, однако оно же ставит ЦНС перед задачей выбора одного варианта из многих.

В сложной картине работы мышц часто можно выделить устойчивые сочетания их активности, используемые в различных движениях. Это уже упоминавшиеся синергии, основанные на врожденных или выработанных в процессе опыта связях, которые, являясь устойчивыми компонентами движений, упрощают управление сложными двигательными актами и помогают преодолеть избыточность количества мышц и числа степеней свободы.

При совершении одного и того же, даже простого движения, организация мышечной деятельности в значительной степени зависит от вмешательства немышечных сил, в частности внешних по отношению к человеку. Так, при ударе молотком, когда к массе предплечья добавляется масса молотка, и, следовательно, увеличивается роль инерции, разгибание предплечья совершается по типу баллистического движения. Аналогичное по кинематике движение при работе напильником, когда основной внешней силой является трение, совершается путем непрерывной активности мышцы на протяжении всего разгибания. Если первое из этих двух движений является в основном предпрограммированным, то во втором велика роль обратных связей.

В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на базе модели внешнего мира и модели собственного тела, строящихся мозгом.

Необходимость внутренних моделей для управления движениями связана со спецификой сенсомоторной системы.

1. Большинство рецепторов расположено на подвижных звеньях тела – следовательно, они собирают информацию в собственных локальных системах координат. Для того чтобы воспользоваться этой информацией, её нужно преобразовать в единую систему координат или, как минимум, обеспечить возможность двухсторонних переходов.

2. Для управления движениями мозгу необходимы величины, которые не содержатся непосредственно в первичных сигналах рецепторов. К подобным величинам относятся такие, как длины кинематических звеньев, положения парциальных и общего центра масс. Кроме того, в первичных сенсорных сигналах не содержатся самые общие сведения о кинематической структуре тела˸ количестве и последовательности звеньев, числе степеней свободы и объёме движений в суставах.

3. Ход выполнения движения оценивается путем сравнения реальной афферентации с ожидаемой (эфферентная копия). Для многозвенных кинематических цепей, оснащенных рецепторами разных модальностей, эфферентная копия оказывается достаточно сложной, и для её построения также требуется внутренняя модель.

Вывод о наличии в ЦНС модели собственного тела был впервые сделан на базе клинических наблюденийфантома ампутированных, известного с глубокой древности. Человек, утративший конечность, в течение длительного времени субъективно продолжает ощущать её присутствие. Речь идет не о редком феномене, проявляющимся в исключительных ситуациях˸ фантом после ампутации наблюдается более чем в 90% случаев. Описаны случаи фантома у детей и при врожденном отсутствии конечности. Это означает, что по меньшей мере некоторые элементы внутренней модели или, как её называют, ʼʼсхемы телаʼʼ, относятся к врожденным.

Характерные черты ампутационного фантома могут быть воспроизведены на здоровом человеке при выключенном зрении, в условиях блокады проведения импульсов, поступающих в мозг от кожных, суставных и мышечных рецепторов руки по чувствительным нервам. Блокировать чувствительность можно, вводя анестетик в плечевое сплетение или временно останавливая кровоток в руке (ишемическая деафферентация). Оказалось, что в этих условиях наблюдается своего рода ʼʼэкспериментальный фантомʼʼ, рассогласование реального и воспринимаемого положения конечности, достигающее порой значительных величин [Гурфинкель, Левик, 1991а]. Когда испытуемого просили совершить движение ишемизированной рукой, он планировал его, исходя из того, как в данный момент рука была представлена в системе внутреннего представления, а не из её реального положения.

СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ - понятие и виды. Классификация и особенности категории "СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ" 2015, 2017-2018.

8. СХЕМА ТЕЛА И СИСТЕМА ВНУТРЕННЕГО ПРЕДСТАВЛЕНИЯ

В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.

Необходимость внутренних моделей для управления движениями связана со спецификой сенсомоторной системы.

1. Большинство рецепторов расположено на подвижных звеньях тела – следовательно, они собирают информацию в собственных локальных системах координат. Для того чтобы воспользоваться этой информацией, её нужно преобразовать в единую систему координат или, как минимум, обеспечить возможность двухсторонних переходов.

2. Для управления движениями мозгу необходимы величины, которые не содержатся непосредственно в первичных сигналах рецепторов. К подобным величинам относятся такие, как длины кинематических звеньев, положения парциальных и общего центра масс. Кроме того, в первичных сенсорных сигналах не содержатся самые общие сведения о кинематической структуре тела: количестве и последовательности звеньев, числе степеней свободы и объёме движений в суставах.

3. Ход выполнения движения оценивается путём сравнения реальной афферентации с ожидаемой (эфферентная копия). Для многозвенных кинематических цепей, оснащённых рецепторами разных модальностей, эфферентная копия оказывается достаточно сложной, и для её построения также требуется внутренняя модель.

Вывод о наличии в ЦНС модели собственного тела был впервые сделан на основе клинических наблюдений фантома ампутированных, известного с глубокой древности. Человек, утративший конечность, в течение длительного времени субъективно продолжает ощущать её присутствие. Речь идёт не о редком феномене, проявляющимся в исключительных ситуациях: фантом после ампутации наблюдается более чем в 90% случаев. Описаны случаи фантома у детей и при врождённом отсутствии конечности. Это означает, что по меньшей мере некоторые элементы внутренней модели или, как её называют, «схемы тела», относятся к врождённым.

Характерные черты ампутационного фантома могут быть воспроизведены на здоровом человеке при выключенном зрении, в условиях блокады проведения импульсов, поступающих в мозг от кожных, суставных и мышечных рецепторов руки по чувствительным нервам. Блокировать чувствительность можно, вводя анестетик в плечевое сплетение или временно останавливая кровоток в руке (ишемическая деафферентация). Оказалось, что в этих условиях наблюдается своего рода «экспериментальный фантом», рассогласование реального и воспринимаемого положения конечности, достигающее порой значительных величин [Гурфинкель, Левик, 1991а]. Когда испытуемого просили совершить движение ишемизированной рукой, он планировал его, исходя из того, как в данный момент рука была представлена в системе внутреннего представления, а не из её реального положения.

В условиях ишемической деафферентации, несмотря на отсутствие проприоцептивного притока, не возникает ощущения «исчезновения» руки либо её дистальных звеньев. Это означает, что в ЦНС имеется своего рода список звеньев тела, составляющие которого обладают консерватизмом и устойчивостью к разного рода изменениям периферии. Сохранение кинестатических ощущений можно объяснить тем, что осознание положения кинематических звеньев происходит не на основе «сырой» афферентации, а на базе сложной информационной структуры – «схемы конечности», её внутренней модели. При изменении или резком снижении афферентации нарушается «привязка» этой модели к физическому пространству, может наблюдаться и дрейф отдельных её параметров, но сама модель сохраняется и служит базой для восприятия конечности и планирования её движений.

Другим источником представлений о схеме тела явились клинические наблюдения, показывающие, что некоторые формы церебральной патологии, особенно поражения правой теменной доли, приводят к возникновению стойких искажённых представлений о собственном теле и окружающем пространстве. Среди этих нарушений встречаются одностороннее игнорирование одной конечности или половины тела на поражённой стороне (контралатеральной по отношению к поражённому полушарию); аллостезия – восприятие стимулов, приложенных к больной стороне, как приложенных к здоровой стороне, отрицание дефекта, иллюзорные движения поражённых конечностей, отрицание принадлежности больному поражённых конечностей; ослабление осознания частей тела (асхематия и гемидеперсонализация); фантомные дополнительные конечности.

Разнообразие клинических проявлений, обусловленных нарушениями схемы тела, указывает на сложность выполняемых ею функций. Кроме того, видно, что всё многообразие нарушений распадается на три группы: а) нарушение представлений о принадлежности частей тела; б) нарушение правильных представлений о форме, размерах и положении частей тела и в) иллюзорные движения.

С точки зрения схемы тела представляют интерес и исследования так называемых «изменённых состояний сознания», возникающих у здоровых людей под действием галлюциногенов, гипноза, сенсорной депривации, во сне и т.д. Из всего многообразия феноменов изменённого состояния сознания выделяют группу этиологически независимых, т.е. не зависящих от природы агента, вызвавшего такое состояние. Треть из этих феноменов имеет непосредственное отношение к схеме тела и моторике. Люди, испытавшие изменённые состояния сознания, часто сообщают что-либо из далее перечисленного: граница между телом и окружением была размытой; опора представлялась качающейся; конечности казались больше, чем обычно; окружающие предметы были больше, чем обычно; тело исчезало; тело представлялось плавающим; окружение казалось нереальным; «я» и окружение представлялись единым целым; терялась возможность управлять движениями своего тела; части тела больше им не принадлежали. Из этого перечня видно, что и здесь можно выделить нарушения, связанные с восприятием целостности тела и его границ, размеров отдельных звеньев и нарушениями двигательных возможностей организма. В сравнении с клиническими проявлениями, характерными для органических поражений мозга, здесь можно выделить ещё одну сторону, связанную с нарушениями взаимоотношений между телом и внешним пространством: плавание, качающаяся опора и др. (т.е. с трудностями в формировании системы отсчёта).

Но, возможно, не стоит слишком сильно расширять перечень функций, выполняемых схемой тела, а отнести к ним только описание таких стабильных характеристик тела, как разделение на туловище и присоединённые к нему голову и конечности, последовательность и длины звеньев конечностей, число степеней свободы и объёмы движений в суставах, расположение мышц и основных рецептивных полей. Без этого описания невозможен ни анализ поступающих от многочисленных рецепторов сигналов о теле (соместезия), ни реализация моторных программ. Задачу описания текущего положения тела и его конфигурации в рамках соответствующей системы отсчёта целесообразно отнести к функциям системы внутреннего представления собственного тела. Такое разделение – это не просто вопрос терминологии, в его пользу говорит тесная связь между представлением собственного тела и окружающего (экстраперсонального) пространства, включая как общие закономерности формирования представления о теле и ближнем пространстве, так и во многом общий анатомический субстрат. Последнее подтверждается тем, что при поражениях определённых структур ЦНС нарушения восприятия пространства и собственного тела сопутствуют друг другу.

Подавляющая часть наших движений пространственно ориентированы, т.е. направлены на достижение определённой точки в пространстве. Пространственно ориентированной является и поза (относительно опоры, гравитационной вертикали и структуры зрительного окружения). Именно поэтому управление позой и движениями требует системы отсчёта, в которой представлено как тело, так и окружающее пространство. Из физики известно, что всякое движение относительно, поэтому говорить о движении имеет смысл только в том случае, если указано, в какой системе отсчёта это движение происходит. В последнее время изучением системы внутреннего представления и системами отсчёта начали заниматься и нейрофизиологи. В результате появилось много экспериментальных данных, свидетельствующих о том, что система внутреннего представления пространства реально существует и доступна изучению. Например, установлено, что можно мысленно манипулировать трёхмерными объектами так же, как и их реальными физическими прототипами. Система внутреннего представления работает не просто с двухмерной проекцией предмета, аналогичной сетчаточному изображению, а с его трёхмерной моделью. Это следует из опытов, в которых на экране человеку предъявляли два идентичных или зеркальных предмета в разной ориентации. Для того чтобы установить, одинаковы ли показанные предметы, мозг конструировал необходимый мысленный путь для преобразования (поворот или перемещение). Выбирался не случайный, а простейший и кратчайший путь. Время мысленного манипулирования линейно зависело от угла поворота, необходимого для того, чтобы привести объекты к одной ориентации. Индикатором процессов внутреннего моделирования двигательных актов может быть усиление локального мозгового кровотока в двигательных центрах мозга, обнаруженное при многих типах мысленных движений. Так, избирательная активация кровотока в области классических речевых центров левого полушария наблюдается при невокализованной речи, например счёте про себя.

В зависимости от того, выполняются ли движения относительно собственного тела или относительно системы координат, связанной с экстраперсональным пространством, изменяется активность нейронов в различных областях мозга.

Своеобразным клиническим подтверждением существования системы внутреннего представления служит «геминеглект», т.е. игнорирование пациентом половины своего тела и внешнего пространства (обычно левой) при поражениях правой теменной доли, несмотря на сохранность элементарных сенсорных и моторных функций. Геминеглект связывали с дефицитом внимания и нарушениями программирования движений, однако многие данные свидетельствуют о том, что дефект затрагивает именно систему внутреннего представления.

В классическом эксперименте пациента-миланца просили представить себя стоящим спиной к знаменитому собору в Милане и описать расположенную перед ним площадь. Пациент называл или рисовал только здания, находящиеся с правой стороны площади, игнорируя её левую часть. Затем его просили представить себя стоящим на противоположной стороне площади лицом к собору и вновь описать открывающуюся панораму. Пациент опять описывал только правую половину площади, но при новой ориентации в сферу его внимания попадали здания, которые игнорировались в первом случае. Это означает, что внутренняя модель у пациента была полной, но он имел доступ только к одной половине этого представления, менявшейся в зависимости от ориентации его тела, т.е. от избранной системы отсчёта. Таким образом, при операциях с внутренним представлением пространства проявлялся тот же дефект, что и при рассматривании реальных объектов.

Известные способы изучения системы внутреннего представления ориентированы главным образом на её роль в восприятии. Однако в последнее время появились новые экспериментальные подходы, базирующиеся на традиционных методах физиологии движений, а не ориентированные исключительно на перцепцию и словесные отчёты. На осознаваемом уровне отражается лишь небольшая часть работы нервной системы при выполнении пространственно ориентированных действий. Поэтому можно полагать, что большинство интегративных действий, выполняемых внутренней моделью тела, протекает на подсознательном уровне. Примером таких действий могут служить описанные Р. Магнусом шейные и вестибулярные «позные» автоматизмы, участвующие в поддержании нормального положения тела и восстановлении нарушенного равновесия у животных. У здорового взрослого человека в состоянии покоя шейные влияния на мускулатуру туловища и конечностей незаметны, но выявляются на фоне тонических реакций, вызванных вибрационной стимуляцией мышечных рецепторов. У сидящего человека, стопы которого не имеют контакта с полом, вибрация ахилловых сухожилий вызывает двухстороннюю активацию четырёхглавых мышц и разгибание ног в коленных суставах. Поворот головы относительно вертикальной оси сопровождается нарушением симметрии реакции: она усиливается на «затылочной» ноге и ослабляется на «подбородочной». Такая же реакция наблюдается в ответ на непроизвольный поворот головы при вибрации шейных мышц.

Известно, что вибрация сухожилия или брюшка мышцы с частотой, вызывающей активацию мышечных рецепторов растяжения, может приводить к возникновению локального тонического вибрационного рефлекса – сокращению мышцы, подвергающейся вибрации. В результате возникает движение соответствующего звена. Если его предотвратить с помощью жёсткой фиксации, то тонический вибрационный рефлекс, как правило, не развивается, зато появляется иллюзия движения звена в направлении, противоположном тому, в котором происходило бы реальное движение в отсутствие фиксации. Так, вибрацией соответствующих шейных мышц можно вызвать поворот головы, а при её фиксации в среднем положении при той же вибрации у испытуемых создавалась иллюзия поворота головы в противоположную сторону.

При иллюзорном повороте ассиметрия движения ног имела знак, соответствующий направлению иллюзии, причём она была выражена даже сильнее, чем при реальном повороте головы. Это показывает, что вибрационная стимуляция одних и тех же афферентов может оказывать прямо противоположное модулирующее влияние на тоническую активность мышц ног в зависимости от состояния системы внутреннего представления [Гурфинкель и др., 1991б].

Известен феномен изменения направления отклонения тела при гальванической вестибулярной пробе в зависимости от ориентации (поворота) головы. Оказалось, что сходный эффект можно получить и в том случае, когда вместо реального поворота головы вызывалась иллюзия такого поворота. Таким образом, «позные» автоматизмы модулируются внутренним представлением о конфигурации тела. Кроме того, система внутреннего представления должна включать также систему координат, в которой описываются ориентация и движение тела относительно внешнего пространства. В зависимости от ситуации и двигательной задачи организм может использовать систему отсчёта, связанную с корпусом, с головой, с внешним пространством или с каким-либо подвижным объектом. Переход от одной системы координат к другой влияет не только на восприятие, но и на двигательные реакции, обычно относимые к автоматическим.

Так, медленные повороты корпуса относительно фиксированной в пространстве головы вызывают иллюзию движения головы относительно неподвижного корпуса. Это показывает, что система внутреннего представления склонна использовать систему координат, связанную с корпусом, и интерпретировать взаимный поворот головы и корпуса как вращение головы относительно неподвижного корпуса. Однако в условиях данного эксперимента можно вызвать переход от эгоцентрической системы координат (связанной с корпусом) к экзоцентрической (связанной с внешним пространством). Для этого испытуемого просили захватить рукой рукоятку, жёстко закреплённую на массивном неподвижном столе. Информация о взаимном перемещении корпуса и рукоятки, а также априорное представление о том, что рукоятка несмещаема, приводили к переходу от эгоцентрической системы координат к экзоцентрической – у испытуемого появлялись ощущения поворотов корпуса, который ранее воспринимался неподвижным, соответственно исчезали и ощущения поворотов головы.

Переход от одной системы координат к другой подтверждался не только субъективным отчётом испытуемого, но и ярко выраженными изменениями реакций глазодвигательного аппарата. Если вначале амплитуда движения глаз в направлении иллюзорного поворота головы превосходила амплитуду поворотов корпуса, то после захвата рукоятки она уменьшалась в 3–4 раза [Гурфинкель, Левик, 1995].

Итак, нейронная модель тела, механизмы построения систем отсчёта, набор базисных моторных автоматизмов и алгоритмов их согласования составляют основу, на которой формируется внутреннее представление о собственном теле и окружающем пространстве. Система внутреннего представления играет ведущую роль в задачах переработки сенсорной информации и реализации пространственно ориентированных движений. Реакции, которые на животных считаются классическими примерами рефлекторных «позных» автоматизмов, у человека в сильной степени определяются тем, как описывается взаимное положение головы, туловища и конечностей в этой системе. Такое описание требует определённой системы отсчёта. Переход из одной системы координат в другую ведёт к изменению интерпретации сенсорных сигналов и модификации двигательных реакций, возникающих в ответ на эти сигналы. Выбор системы отсчёта во многом определяется априорными сведениями об объектах внешнего мира, с которыми человек поддерживает контакт (жёсткость, несмещаемость и др.).

Из книги Основы зоопсихологии автора Фабри Курт Эрнестович

Ранние представления о психической деятельности животных Начало познания поведения животных При изучении любой формы психической деятельности прежде всего встает вопрос о врожденном и индивидуально приобретаемом, об элементах инстинкта и научения в поведении

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Зрительные обобщения и представления Подлинная рецепция, истинное восприятие предметных компонентов среды как таковых возможны лишь на основе достаточно развитой способности к анализу и обобщению, ибо только это позволяет полноценно узнавать постоянно меняющие свой

Из книги Беседы о новой иммунологии автора Петров Рэм Викторович

ГЛАВА 2 НЕКОТОРЫЕ ПРЕДСТАВЛЕНИЯ ОБ ЭВОЛЮЦИИ

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Раковые клетки возникают из клеток собственного тела. Значит, они свои, а не чужие. Значит, иммунная система не может их «увидеть». - Иммунная система организма направлена на то, чтобы уничтожать любые клетки, которые были или стали чужеродными, не так ли? Рак,

Из книги Метаэкология автора

Из книги Нерешенные проблемы теории эволюции автора Красилов Валентин Абрамович

Общая схема Задача экосистемной теории эволюции состоит в том, чтобы связать изменение экосистемных параметров - биомассы, продуктивности, отмершего вещества, или мортмассы - с эволюцией разнообразия организмов, их жизненной стратегии и морфологии, механизмами

Из книги Основы психофизиологии автора Александров Юрий

ОБЩАЯ СХЕМА ЭКОСИСТЕМНОЙ ЭВОЛЮЦИИ Здесь я хотел бы подытожить вышеизложенное в виде краткой схемы. Эволюционный процесс охватывает сложные системы с иерархической структурой и протекает на различных организационных уровнях, каждый из которых обладает известной

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

3.2. Структура и функции внутреннего уха Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, который по всей длине разделён вестибулярной и основной мембранами на три хода: верхний, средний и нижний (рис.

Из книги Естественные технологии биологических систем автора Уголев Александр Михайлович

Какие современные представления о Вселенной предвосхитил греческий философ Демокрит еще в V веке до нашей эры? Древнегреческий философ-материалист Демокрит (около 460 – около 370 до нашей эры) вошел в историю как один из первых представителей атомизма, однако занимался он

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

2.4. Схема переваривания пищи как сочетание трех основных типов пищеварения После обнаружения мембранного пищеварения классическая схема ассимиляции пищи претерпела существенные изменения. Согласно классическим представлениям, пищевые вещества - нутриенты, способные

Из книги Леса моря. Жизнь и смерть на континентальном шельфе автора Куллини Джон

Общие представления о типологизации Чем умнее человек, тем больше своеобычности он находит во всяком, с кем сообщается. Для человека заурядного все люди на одно лицо. Блез Паскаль Построение различных типологий человеческой психики преследует две основные цели –

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора

Впечатление: III. Берега «внутреннего космоса» Это было чем-то вроде зеркального изображения космического запуска по программе НАСА. Двое людей в небольшой герметичной капсуле, которая зависла над голубой бездной. Оборудование и средства связи прошли проверку, но сам

Из книги Биология. Общая биология. 11 класс. Базовый уровень автора Сивоглазов Владислав Иванович

28. Современные представления о гене и геноме Вспомните!Что такое ген и генотип?Что вам известно о современных достижениях в области генетики?В 1988 г. в США по инициативе лауреата Нобелевской премии Джеймса Уотсона и в 1989 г. в России под руководством академика Александра

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

15. Современные представления о возникновении жизни Вспомните!Какие химические элементы входят в состав белков и нуклеиновых кислот?Что такое биологические полимеры?Какие организмы называют автотрофами; гетеротрофами?Теория биохимической эволюции. Наибольшее

Из книги Тайны пола [Мужчина и женщина в зеркале эволюции] автора Бутовская Марина Львовна

1.1. Современные представления о сущности жизни Жизнь во всех ее формах и проявлениях изучает биология. Предметом биологии является многообразие вымерших и ныне существующих организмов, их строение и функции, происхождение и эволюция, размножение и развитие,

Из книги автора

Современные представления о сексуальной ориентации В настоящее время сексуальную ориентацию подразделяют на гетеросексуальную, гомосексуальную и бисексуальную. Большую часть XX века гомосексуализм являлся объектом изучения психологов и психиатров, и во главу угла

  • Глава 3 передача и переработка сенсорных сигналов
  • 1. Обнаружение и различение сигналов
  • 1.2. Сенсорные пороги
  • 2. Передача и преобразование сигналов
  • 3. Кодирование информации
  • 4. Детектирование сигналов
  • 5. Опознание образов
  • 6. Адаптация сенсорной системы
  • 7. Взаимодействие сенсорных систем
  • 8. Механизмы переработки информации в сенсорной системе
  • Глава 4 психофизиология сенсорных процессов
  • 1. Общие свойства сенсорных систем
  • 1.1. Методы исследования сенсорных систем
  • 2. Зрительная система
  • 2.1. Строение и функции оптического аппарата глаза
  • 2.2. Аккомодация
  • 2.3. Аномалии рефракции глаза
  • 2.4. Зрачок и зрачковый рефлекс
  • 2.5. Структура и функции сетчатки
  • 2.6. Структура и функции слоев сетчатки
  • 2.7. Нейроны сетчатки
  • 2.8. Нервные пути и связи в зрительной системе
  • 2.9. Электрическая активность центров зрительной системы
  • 2.10. Световая чувствительность
  • 2.11. Зрительная адаптация
  • 2.12. Дифференциальная чувствительность зрения
  • 2.13. Яркостной контраст
  • 2.14. Слепящая яркость света
  • 2.15. Инерция зрения, слитие мельканий, последовательные образы
  • 2.16. Цветовое зрение
  • 2.17. Восприятие пространства
  • 3. Слуховая система
  • 3.1. Структура и функции наружного и среднего уха
  • 3.2. Структура и функции внутреннего уха
  • 3.3. Анализ частоты звука (высоты тона)
  • 3.4. Слуховые ощущения
  • 4. Вестибулярная система
  • 4.1. Строение и функции рецепторного вестибулярного аппарата
  • 4.2. Электрические явления в вестибулярной системе
  • 4.4. Основные афферентные пути и проекции вестибулярных сигналов
  • 4.5. Функции вестибулярной системы
  • 5. Соматосенсорная система
  • 5.1. Кожная рецепция
  • 5.2. Свойства тактильного восприятия
  • 5.3. Температурная рецепция
  • 5.4. Болевая рецепция
  • 5.5. Мышечная и суставная рецепция (проприорецепция)
  • 5.6. Передача и переработка соматосенсорной информации
  • 6. Обонятельная система
  • 7. Вкусовая система
  • 7.2. Вкусовые ощущения и восприятие
  • 8. Висцеральная сенсорная система
  • 8.1.Интерорецепторы
  • 8.2. Проводящие пути и центры висцеральной сенсорной системы
  • 8.3. Висцеральные ощущения и восприятие
  • 9. Основные количественные характеристики сенсорных систем человека
  • Глава 5 управление движениями
  • 1. Общие сведения о нервно-мышечной системе
  • 2. Проприоцепция
  • 3. Центральные аппараты управления движениями
  • 4. Двигательные программы
  • 5. Координация движений
  • 6. Типы движений
  • 7. Выработка двигательных навыков
  • 8. Схема тела и система внутреннего представления
  • Глава 6 психофизиология памяти
  • 1. Временная организация памяти
  • 1.1. Градиент ретроградной амнезии
  • 1.2. Стадии фиксации памяти
  • 1.3. Кратковременная и долговременная память
  • 2. Состояния энграммы
  • 2.1. Спонтанное восстановление памяти
  • 2.2. Восстановление энграммы действием второго электрошока
  • 2.3. Восстановление памяти методом напоминания
  • 2.4. Восстановление памяти методом ознакомления
  • 2.5. Ретроградная амнезия для реактивированных следов памяти
  • 2.6. Основное положение теории активной памяти
  • 3. Гипотеза о распределенности энграммы
  • 3.1. Распределенность энграммы в опытах с локальными раздражениями мозга
  • 3.2. Распределенность энграммы по множеству элементов мозга
  • 4. Процедурная и декларативная память
  • 5. Молекулярные механизмы памяти
  • 6. Дискретность мнемических процессов
  • 7. Константа ливанова
  • 8. Объем и быстродействие памяти
  • 9. Диапазон ощущений
  • 10. Нейронные коды памяти
  • Глава 7 психофизиология эмоций
  • 1. Эмоция как отражение актуальной потребности и вероятности ее удовлетворения
  • 2. Структуры мозга, реализующие подкрепляющую, переключающую, компенсаторно-замещающую и коммуникативную функции эмоций
  • 3. Индивидуальные особенности взаимодействия структур мозга, реализующих функции эмоций как основу темпераментов
  • 4. Влияние эмоций на деятельность и объективные методы контроля эмоционального состояния человека
  • Глава 8 функциональные состояния
  • 1. Определение функционального состояния
  • 2. Роль и место функционального состояния в поведении
  • 3. Моделирующая система мозга
  • 3.1. Стволово-таламо-кортикальная система
  • 3.2. Базальная холинергическая система переднего мозга
  • 3.3. Каудо-таламо-кортикальная система
  • 3.4. Модулирующие нейроны
  • Глава 9 психофизиология внимания
  • 1. Что такое внимание
  • 2. Теории фильтра
  • 3. Проблема внимания в традиционной психофизиологии
  • 4. Проблема внимания в системной психофизиологии
  • Глава 10 ориентировочный рефлекс и ориентировочно-исследовательская деятельность
  • 1. Ориентировочный рефлекс
  • 2. Ориентировочно-исследовательская деятельность
  • Глава 11 психофизиология сознания
  • 1. Основные концепции сознания
  • 2. «Светлое пятно»
  • 3. Повторный вход возбуждения и информационный синтез
  • 3.1. Мозговая основа ощущений
  • 3.2. Механизмы мышления
  • 4. Сознание, общение и речь
  • 5. Функции сознания
  • 6. Три концепции – одно сознание
  • Глава 12 психофизиология бессознательного
  • 1. Понятие бессознательного в психофизиологии
  • 2. Индикаторы осознаваемого и неосознаваемого восприятия
  • 3. Семаническое дифференцирование неосознаваемых стимулов
  • 4. Временные связи (ассоциации) на неосознаваемом уровне
  • 5. Функциональная ассиметрия полушарий и бессознательное
  • 6. Обратные временные связи и бессознательное
  • 6.1. Роль обратных временных связей в нервном механизме «психологической защиты»
  • 6.2. Значение неосознаваемых стимулов обратной связи в когнитивной деятельности
  • 7. Роль бессознательного при некоторых формах патологии
  • Глава 13 сон и сновидения
  • 1. Активное наступление сна или лишение бодрствования?
  • 2. Единый процесс или различные состояния?
  • 3. Стадии медленного сна и быстрый сон
  • 4. Сон в отно- и филогенезе
  • 5. Потребность в сне
  • 6. Депривация сна
  • 7. Сновидения
  • 8. Почему мы спим? (функциональное значение сна)
  • Глава 14 системная психофизиология
  • 1. Активность и реактивность
  • 1.1. Две парадигмы в исследовании поведения и деятельности
  • 1.2. Реактивность
  • 1.3. Активность
  • 1.4. Эклектика в психологии и психофизиологии
  • 2. Теория функциональных систем
  • 2.1. Что такое система?
  • 2.2. Результат – системообразующий фактор
  • 2.3. Временной парадокс
  • 2.4. Целенаправленность поведения
  • 2.5. Опережающее отражение
  • 2.6. Теория п.К. Анохина как целостная система представлений
  • 2.7. Системные процессы
  • 2.8. Поведение как континуум результатов
  • 3. Системная детерминация активности нейрона
  • 3.1. Парадигма реактивности: нейрон, как и индивид, отвечает на стимул
  • 3.2. Парадигма активности: нейрон, как и индивид, достигает «результат», получая необходимые метаболиты из своей «микросреды»
  • 3.3. «Потребности» нейрона и объединение нейронов в систему как способ их обеспечения
  • 3.4. Значение системного понимания детерминации активности нейрона для психологии
  • 4. Субъективность отражения
  • 4.1. Активность как субъективное отражение
  • 4.2. Физические характеристики среды и целенаправленное поведение
  • 4.3. «Дробление» среды индивидом определяется историей их соотношения
  • 4.4. Зависимость активности центральных и периферических нейронов от цели поведения
  • 4.5. Значение эфферентных влияний
  • 5. Психофизиологическая проблема и задачи системной психофизиологии
  • 5.1. Коррелятивная психофизиология
  • 5.2. Варианты традиционного решения психофизиологической проблемы
  • 5.3. Системное решение психофизиологической проблемы
  • 5.4. Задачи системной психофизиологии и ее значение для психологии
  • 5.5. Взаимосодействие коррелятивной и системной психофизиологии
  • 6. Системогинез
  • 6.1. Органогенез и системогенез
  • 6.2. Научение как реактивация процессов развития
  • 6.3. Научение – селекция или инструкция?
  • 6.4. Системная специализация и системоспецифичность нейронов
  • 7. Структура и динамика субъективного мира человека и животных
  • 7.1. Историческая детерминация уровневой организации систем
  • 7.2. Поведение как одновременная реализация систем разного «возраста»
  • 7.3. Структура субъективного мира и субъект поведения
  • 7.4. Динамика субъективного мира как смена состояний субъекта поведения
  • 7.5. Модифицируемость системной организации поведенческого акта в последовательных реализациях
  • 7.6. Человек и животное: системная перспектива
  • 7.7. Направления исследований в системной психофизиологии
  • 8. Проекция индивидуального опыта на структуры мозга в норме и патологии
  • 8.1. Зависимость проекции индивидуального опыта от особенностей индивидуального развития
  • 8.2. Паттерны системной специализации нейронов разных структур мозга
  • 8.3. Изменение проекции индивидуального опыта от животного к человеку
  • 8.4. Изменение проекции индивидуального опыта в условиях патологии
  • 8.5. Психофизиологическое основание закона Рибо
  • 8.6. Значение материала патологии для изучения системной организации поведения
  • 9. Требования к методологии системного анализа в психологии и системная психофизиология
  • Глава 15 психофизиология научения
  • 1. Психологические и биологические теории научения
  • 2. Подход к научению как процессу
  • 3. Представление о нейрофизиологических механизмах научения
  • 4. Специфика психофизиологического рассмотрения научения
  • 5. Системная психофизиология научения. Проблема элементов индивидуального опыта
  • 6. Фиксация этапов обучения в виде элементов опыта
  • 7. Влияние истории научения на структуру опыта и организацию мозговой активности
  • Глава 16 связанные с событиями потенциалы мозга (ссп) в психофизиологическом исследовании
  • 1. Определение, основные проблемы и краткая история метода ссп
  • 1.1. Связанные с событиями потенциалы мозга
  • 2. Методические особенности регистрации и обработки ссп
  • 2.1. Общая характеристика сигнала
  • 2.2. Стандартные способы получения воспроизводимой конфигурации ссп
  • 2.3. Считывание сигнала
  • 2.4. Усреднение
  • 2.5. Фильтрация
  • 2.6. Описание ссп
  • 2.7. Особенности метода ссп
  • 3. Феноменология и типология ссп
  • 3.1. Зрительные вызванные потенциалы
  • 3.2. Слуховые вызванные потенциалы.
  • 3.3. Соматосенсорные вызванные потенциалы
  • 3.4. Потенциалы, связанные с выполнением движений
  • 3.5. Условная негативная волна
  • 3.6. Колебание р300
  • 3.7. Принципы упорядочения феноменологии ссп
  • 4. Проблема функционального значения ссп
  • 4.1. Психологические корреляты
  • 5. Ссп как отражение динамики индивидуального опыта
  • 5.1. Потенциал универсальной конфигурации
  • 5.2. Основания классификации ссп
  • 6. Перспективы использования ссп
  • Глава 17 дифференциальная психофизиология
  • 1. Концепция свойств нервной системы
  • 2. Общие свойства нервной системы и целостные формально-динамические характеристики индивидуальности
  • 3. Интегральная индивидуальность и ее структура
  • 4. Индивидуальные особенности поведения e животных
  • 5. Интеграция знаний об индивидуальности
  • 6. Кросс-культурные исследования индивидуальности
  • Глава 18 психофизиология профессиональной деятельности
  • 1. Теоретические основания применения психофизиологии для решения практических задач в психологии труда
  • 2. Методическое обеспечение психофизиологического аспекта прикладных исследований
  • 3. Психофизиология профессионального отбора и профпригодности
  • 4. Психофизиологические компоненты работоспособности
  • 5. Психофизиологические детерминаты адаптации человека к экстремальным условиям деятельности
  • 6. Психофизиологические функциональные состояния (пфс)
  • 7. Биологическая обратная связь (бос)
  • 8. Психофизиологический анализ содержания профессиональной деятельности
  • Глава 19 сравнительная психофизиология
  • 1. Появление психического
  • 2. Эволюция видов
  • 3. Эволюционные преобразования мозга
  • 4. Сравнительный метод в системной психофизиологии
  • 7. Выработка двигательных навыков

    Совершенствование двигательной функции в онтогенезе происходит как за счет продолжающегося в первые годы после рождения созревания врожденных механизмов, участвующих в координации движений, так и в результате научения, т.е. формирования новых связей, которые ложатся в основу программ тех или иных конкретных двигательных актов. Координация новых непривычных движений имеет характерные черты, отличающие ее от координации тех же движений после обучения.

    Ранее уже говорилось, что обилие степеней свободы в опорно-двигательном аппарате, влияние на результат движения сил тяжести и инерции осложняют выполнение любой двигательной задачи. На первых порах обучения ЦНС справляется с этими трудностями, нейтрализуя помехи с помощью дополнительных мышечных напряжений. Мышечный аппарат жестко фиксирует суставы, не участвующие в движении, и активно тормозит инерцию быстрых движений. Такой путь преодоления помех энергетически невыгоден и утомителен. Использование обратных связей еще несовершенно – коррекционные посылки, возникающие на их основе, несоразмерны и вызывают необходимость повторных дополнительных коррекций.

    Мышцы-антагонисты даже тех суставов, в которых совершается движение, активируются одновременно: в циклических движениях мышцы почти не расслабляются. Кроме того, возбуждены также многие мышцы, не имеющие прямого отношения к данному двигательному акту. Движения, совершаемые в таких условиях, напряжены и неэстетичны (например, движения человека, впервые вышедшего на коньках на лед).

    Как показал Н.А. Бернштейн, по мере обучения вырабатывается такая структура двигательного акта, при которой немышечные силы включаются в его динамику, становятся составной частью двигательной программы. Излишние мышечные напряжения при этом устраняются, движение становится более устойчивым к внешним возмущениям. На электромиограммах видна концентрация возбуждения мышц во времени и пространстве, периоды активности работающих мышц укорачиваются, а количество мышц, вовлеченных в работу, уменьшается. Это приводит к повышению экономичности мышечной деятельности, а движения становятся более плавными, точными и непринужденными.

    Важную роль в обучении движениям играет рецепция, особенно проприоцепция. В процессе двигательного научения обратные связи используются не только для коррекции движения по его ходу, но и для коррекции программы следующего движения на основе ошибок предыдущего.

    8. Схема тела и система внутреннего представления

    В настоящее время большинство специалистов согласно, что взаимодействие организма с внешней средой строится на основе модели внешнего мира и модели собственного тела, строящихся мозгом.

    Необходимость внутренних моделей для управления движениями связана со спецификой сенсомоторной системы.

    1. Большинство рецепторов расположено на подвижных звеньях тела – следовательно, они собирают информацию в собственных локальных системах координат. Для того чтобы воспользоваться этой информацией, ее нужно преобразовать в единую систему координат или, как минимум, обеспечить возможность двухсторонних переходов.

    2. Для управления движениями мозгу необходимы величины, которые не содержатся непосредственно в первичных сигналах рецепторов. К подобным величинам относятся такие, как длины кинематических звеньев, положения парциальных и общего центра масс. Кроме того, в первичных сенсорных сигналах не содержатся самые общие сведения о кинематической структуре тела: количестве и последовательности звеньев, числе степеней свободы и объеме движений в суставах.

    3. Ход выполнения движения оценивается путем сравнения реальной афферентации с ожидаемой (эфферентная копия). Для многозвенных кинематических цепей, оснащенных рецепторами разных модальностей, эфферентная копия оказывается достаточно сложной, и для ее построения также требуется внутренняя модель.

    Вывод о наличии в ЦНС модели собственного тела был впервые сделан на основе клинических наблюдений фантома ампутированных, известного с глубокой древности. Человек, утративший конечность, в течение длительного времени субъективно продолжает ощущать ее присутствие. Речь идет не о редком феномене, проявляющимся в исключительных ситуациях: фантом после ампутации наблюдается более чем в 90% случаев. Описаны случаи фантома у детей и при врожденном отсутствии конечности. Это означает, что по меньшей мере некоторые элементы внутренней модели или, как ее называют, «схемы тела», относятся к врожденным.

    Характерные черты ампутационного фантома могут быть воспроизведены на здоровом человеке при выключенном зрении, в условиях блокады проведения импульсов, поступающих в мозг от кожных, суставных и мышечных рецепторов руки по чувствительным нервам. Блокировать чувствительность можно, вводя анестетик в плечевое сплетение или временно останавливая кровоток в руке (ишемическая деафферентация). Оказалось, что в этих условиях наблюдается своего рода «экспериментальный фантом», рассогласование реального и воспринимаемого положения конечности, достигающее порой значительных величин [Гурфинкель, Левик, 1991а]. Когда испытуемого просили совершить движение ишемизированной рукой, он планировал его, исходя из того, как в данный момент рука была представлена в системе внутреннего представления, а не из ее реального положения.

    В условиях ишемической деафферентации, несмотря на отсутствие проприоцептивного притока, не возникает ощущения «исчезновения» руки либо ее дистальных звеньев. Это означает, что в ЦНС имеется своего рода список звеньев тела, составляющие которого обладают консерватизмом и устойчивостью к разного рода изменениям периферии. Сохранение кинестатических ощущений можно объяснить тем, что осознание положения кинематических звеньев происходит не на основе «сырой» афферентации, а на базе сложной информационной структуры – «схемы конечности», ее внутренней модели. При изменении или резком снижении афферентации нарушается «привязка» этой модели к физическому пространству, может наблюдаться и дрейф отдельных ее параметров, но сама модель сохраняется и служит базой для восприятия конечности и планирования ее движений.

    Другим источником представлений о схеме тела явились клинические наблюдения, показывающие, что некоторые формы церебральной патологии, особенно поражения правой теменной доли, приводят к возникновению стойких искаженных представлений о собственном теле и окружающем пространстве. Среди этих нарушений встречаются одностороннее игнорирование одной конечности или половины тела на пораженной стороне (контралатеральной по отношению к пораженному полушарию); аллостезия – восприятие стимулов, приложенных к больной стороне, как приложенных к здоровой стороне, отрицание дефекта, иллюзорные движения пораженных конечностей, отрицание принадлежности больному пораженных конечностей; ослабление осознания частей тела (асхематия и гемидеперсонализация); фантомные дополнительные конечности.

    Разнообразие клинических проявлений, обусловленных нарушениями схемы тела, указывает на сложность выполняемых ею функций. Кроме того, видно, что все многообразие нарушений распадается на три группы: а) нарушение представлений о принадлежности частей тела; б) нарушение правильных представлений о форме, размерах и положении частей тела и в) иллюзорные движения.

    С точки зрения схемы тела представляют интерес и исследования так называемых «измененных состояний сознания», возникающих у здоровых людей под действием галлюциногенов, гипноза, сенсорной депривации, во сне и т.д. Из всего многообразия феноменов измененного состояния сознания выделяют группу этиологически независимых, т.е. не зависящих от природы агента, вызвавшего такое состояние. Треть из этих феноменов имеет непосредственное отношение к схеме тела и моторике. Люди, испытавшие измененные состояния сознания, часто сообщают что-либо из далее перечисленного: граница между телом и окружением была размытой; опора представлялась качающейся; конечности казались больше, чем обычно; окружающие предметы были больше, чем обычно; тело исчезало; тело представлялось плавающим; окружение казалось нереальным; «я» и окружение представлялись единым целым; терялась возможность управлять движениями своего тела; части тела больше им не принадлежали. Из этого перечня видно, что и здесь можно выделить нарушения, связанные с восприятием целостности тела и его границ, размеров отдельных звеньев и нарушениями двигательных возможностей организма. В сравнении с клиническими проявлениями, характерными для органических поражений мозга, здесь можно выделить еще одну сторону, связанную с нарушениями взаимоотношений между телом и внешним пространством: плавание, качающаяся опора и др. (т.е. с трудностями в формировании системы отсчета).

    Но, возможно, не стоит слишком сильно расширять перечень функций, выполняемых схемой тела, а отнести к ним только описание таких стабильных характеристик тела, как разделение на туловище и присоединенные к нему голову и конечности, последовательность и длины звеньев конечностей, число степеней свободы и объемы движений в суставах, расположение мышц и основных рецептивных полей. Без этого описания невозможен ни анализ поступающих от многочисленных рецепторов сигналов о теле (соместезия), ни реализация моторных программ. Задачу описания текущего положения тела и его конфигурации в рамках соответствующей системы отсчета целесообразно отнести к функциям системы внутреннего представления собственного тела. Такое разделение – это не просто вопрос терминологии, в его пользу говорит тесная связь между представлением собственного тела и окружающего (экстраперсонального) пространства, включая как общие закономерности формирования представления о теле и ближнем пространстве, так и во многом общий анатомический субстрат. Последнее подтверждается тем, что при поражениях определенных структур ЦНС нарушения восприятия пространства и собственного тела сопутствуют друг другу.

    Подавляющая часть наших движений пространственно ориентированы, т.е. направлены на достижение определенной точки в пространстве. Пространственно ориентированной является и поза (относительно опоры, гравитационной вертикали и структуры зрительного окружения). Именно поэтому управление позой и движениями требует системы отсчета, в которой представлено как тело, так и окружающее пространство. Из физики известно, что всякое движение относительно, поэтому говорить о движении имеет смысл только в том случае, если указано, в какой системе отсчета это движение происходит. В последнее время изучением системы внутреннего представления и системами отсчета начали заниматься и нейрофизиологи. В результате появилось много экспериментальных данных, свидетельствующих о том, что система внутреннего представления пространства реально существует и доступна изучению. Например, установлено, что можно мысленно манипулировать трехмерными объектами так же, как и их реальными физическими прототипами. Система внутреннего представления работает не просто с двухмерной проекцией предмета, аналогичной сетчаточному изображению, а с его трехмерной моделью. Это следует из опытов, в которых на экране человеку предъявляли два идентичных или зеркальных предмета в разной ориентации. Для того чтобы установить, одинаковы ли показанные предметы, мозг конструировал необходимый мысленный путь для преобразования (поворот или перемещение). Выбирался не случайный, а простейший и кратчайший путь. Время мысленного манипулирования линейно зависело от угла поворота, необходимого для того, чтобы привести объекты к одной ориентации. Индикатором процессов внутреннего моделирования двигательных актов может быть усиление локального мозгового кровотока в двигательных центрах мозга, обнаруженное при многих типах мысленных движений. Так, избирательная активация кровотока в области классических речевых центров левого полушария наблюдается при невокализованной речи, например счете про себя.

    В зависимости от того, выполняются ли движения относительно собственного тела или относительно системы координат, связанной с экстраперсональным пространством, изменяется активность нейронов в различных областях мозга.

    Своеобразным клиническим подтверждением существования системы внутреннего представления служит «геминеглект», т.е. игнорирование пациентом половины своего тела и внешнего пространства (обычно левой) при поражениях правой теменной доли, несмотря на сохранность элементарных сенсорных и моторных функций. Геминеглект связывали с дефицитом внимания и нарушениями программирования движений, однако многие данные свидетельствуют о том, что дефект затрагивает именно систему внутреннего представления.

    В классическом эксперименте пациента-миланца просили представить себя стоящим спиной к знаменитому собору в Милане и описать расположенную перед ним площадь. Пациент называл или рисовал только здания, находящиеся с правой стороны площади, игнорируя ее левую часть. Затем его просили представить себя стоящим на противоположной стороне площади лицом к собору и вновь описать открывающуюся панораму. Пациент опять описывал только правую половину площади, но при новой ориентации в сферу его внимания попадали здания, которые игнорировались в первом случае. Это означает, что внутренняя модель у пациента была полной, но он имел доступ только к одной половине этого представления, менявшейся в зависимости от ориентации его тела, т.е. от избранной системы отсчета. Таким образом, при операциях с внутренним представлением пространства проявлялся тот же дефект, что и при рассматривании реальных объектов.

    Известные способы изучения системы внутреннего представления ориентированы главным образом на ее роль в восприятии. Однако в последнее время появились новые экспериментальные подходы, базирующиеся на традиционных методах физиологии движений, а не ориентированные исключительно на перцепцию и словесные отчеты. На осознаваемом уровне отражается лишь небольшая часть работы нервной системы при выполнении пространственно ориентированных действий. Поэтому можно полагать, что большинство интегративных действий, выполняемых внутренней моделью тела, протекает на подсознательном уровне. Примером таких действий могут служить описанные Р. Магнусом шейные и вестибулярные «позные» автоматизмы, участвующие в поддержании нормального положения тела и восстановлении нарушенного равновесия у животных. У здорового взрослого человека в состоянии покоя шейные влияния на мускулатуру туловища и конечностей незаметны, но выявляются на фоне тонических реакций, вызванных вибрационной стимуляцией мышечных рецепторов. У сидящего человека, стопы которого не имеют контакта с полом, вибрация ахилловых сухожилий вызывает двухстороннюю активацию четырехглавых мышц и разгибание ног в коленных суставах. Поворот головы относительно вертикальной оси сопровождается нарушением симметрии реакции: она усиливается на «затылочной» ноге и ослабляется на «подбородочной». Такая же реакция наблюдается в ответ на непроизвольный поворот головы при вибрации шейных мышц.

    Известно, что вибрация сухожилия или брюшка мышцы с частотой, вызывающей активацию мышечных рецепторов растяжения, может приводить к возникновению локального тонического вибрационного рефлекса – сокращению мышцы, подвергающейся вибрации. В результате возникает движение соответствующего звена. Если его предотвратить с помощью жесткой фиксации, то тонический вибрационный рефлекс, как правило, не развивается, зато появляется иллюзия движения звена в направлении, противоположном тому, в котором происходило бы реальное движение в отсутствие фиксации. Так, вибрацией соответствующих шейных мышц можно вызвать поворот головы, а при ее фиксации в среднем положении при той же вибрации у испытуемых создавалась иллюзия поворота головы в противоположную сторону.

    При иллюзорном повороте ассиметрия движения ног имела знак, соответствующий направлению иллюзии, причем она была выражена даже сильнее, чем при реальном повороте головы. Это показывает, что вибрационная стимуляция одних и тех же афферентов может оказывать прямо противоположное модулирующее влияние на тоническую активность мышц ног в зависимости от состояния системы внутреннего представления [Гурфинкель и др., 1991б].

    Известен феномен изменения направления отклонения тела при гальванической вестибулярной пробе в зависимости от ориентации (поворота) головы. Оказалось, что сходный эффект можно получить и в том случае, когда вместо реального поворота головы вызывалась иллюзия такого поворота. Таким образом, «позные» автоматизмы модулируются внутренним представлением о конфигурации тела. Кроме того, система внутреннего представления должна включать также систему координат, в которой описываются ориентация и движение тела относительно внешнего пространства. В зависимости от ситуации и двигательной задачи организм может использовать систему отсчета, связанную с корпусом, с головой, с внешним пространством или с каким-либо подвижным объектом. Переход от одной системы координат к другой влияет не только на восприятие, но и на двигательные реакции, обычно относимые к автоматическим.

    Так, медленные повороты корпуса относительно фиксированной в пространстве головы вызывают иллюзию движения головы относительно неподвижного корпуса. Это показывает, что система внутреннего представления склонна использовать систему координат, связанную с корпусом, и интерпретировать взаимный поворот головы и корпуса как вращение головы относительно неподвижного корпуса. Однако в условиях данного эксперимента можно вызвать переход от эгоцентрической системы координат (связанной с корпусом) к экзоцентрической (связанной с внешним пространством). Для этого испытуемого просили захватить рукой рукоятку, жестко закрепленную на массивном неподвижном столе. Информация о взаимном перемещении корпуса и рукоятки, а также априорное представление о том, что рукоятка несмещаема, приводили к переходу от эгоцентрической системы координат к экзоцентрической – у испытуемого появлялись ощущения поворотов корпуса, который ранее воспринимался неподвижным, соответственно исчезали и ощущения поворотов головы.

    Переход от одной системы координат к другой подтверждался не только субъективным отчетом испытуемого, но и ярко выраженными изменениями реакций глазодвигательного аппарата. Если вначале амплитуда движения глаз в направлении иллюзорного поворота головы превосходила амплитуду поворотов корпуса, то после захвата рукоятки она уменьшалась в 3–4 раза [Гурфинкель, Левик, 1995].

    Итак, нейронная модель тела, механизмы построения систем отсчета, набор базисных моторных автоматизмов и алгоритмов их согласования составляют основу, на которой формируется внутреннее представление о собственном теле и окружающем пространстве. Система внутреннего представления играет ведущую роль в задачах переработки сенсорной информации и реализации пространственно ориентированных движений. Реакции, которые на животных считаются классическими примерами рефлекторных «позных» автоматизмов, у человека в сильной степени определяются тем, как описывается взаимное положение головы, туловища и конечностей в этой системе. Такое описание требует определенной системы отсчета. Переход из одной системы координат в другую ведет к изменению интерпретации сенсорных сигналов и модификации двигательных реакций, возникающих в ответ на эти сигналы. Выбор системы отсчета во многом определяется априорными сведениями об объектах внешнего мира, с которыми человек поддерживает контакт (жесткость, несмещаемость и др.).

    Читайте также: