Буферные системы крови и кислотно щелочной гомеостаз. Печень выполняет и экскреторную функцию, выделяя из организма соли желчных кислот, билирубин, холестерин, жирные кислоты, лецитин, кальций, хлор, натрий, бикарбонаты. Физико-химические гомеостатические

(от др. греч. homoios — подобный и stasis — стояние) - это подвижное равновесие или колеблющееся в ограниченных пределах постоянство внутренней среды организма , и прежде всего крови, лимфы, тканевой (внеклеточной) жидкости. В физиологическом смысле гомеостаз, например, это постоянство температуры тела, кровяного давления, уровень сахара в крови и т. д.

Функции гомеостаза

Несколько условно гомеостаз определяет три основные функции:

  • адаптационную (приспособительную);
  • энергетическую;
  • репродуктивную (способность к воспроизводству, размножению).

До определенного возраста эти три главных составных звена гомеостаза обеспечивают практически нормальное состояние организма. Затем возникают условия для появления так называемых нормальных или неинфекционных болезней. В частности, ожирения , климакса и повышения чувствительности к неблагоприятным воздействиям внешней среды (гиперадаптозу). Вообще любое сколь-либо длительное нарушение гомеостаза само по себе уже болезнь.

Благодаря сложным механизмам саморегуляции организм здорового человека приспосабливается к изменившимся условиям жизни. Более того, в молодом и среднем возрасте активнее, чем в старости, включаются механизмы физиологической защиты, призванные охранять организм от развития опасных для него последующих изменений.

Сложное защитное взаимодействие нервных, эндокринных, гуморальных, обменных, выделительных и ряда других систем во многом зависит от питания человека .

Как уже упоминалось, особое значение это приобретает в младенчестве и старости, когда механизмы гомеостаза реагируют с опозданием и не всегда с необходимой активностью.

Кислотно-щелочное равновесие (баланс pH)

Одно из важнейших условий гомеостаза - кислотно-щелочное равновесие . Расщепление жиров и углеводов пищи сопровождается образованием довольно больших количеств углекислоты. Использование резервного гликогена приводит к накоплению в мышцах молочной кислоты. Мочевая кислота закономерно оказывается одним из конечных продуктов утилизации белков. Избыток этих органических кислот и является главной причиной ацидоза. Чаще всего он осложняет течение сахарного диабета и тяжелых воспалительных процессов. Запас веществ, обладающих щелочной реакцией и способных тем самым нейтрализовать ацидоз, в организме человека невелик. Поэтому они систематически и в достаточных количествах должны поступать с пищей. К этим компонентам пищи в первую очередь относятся свободные органические кислоты. В ходе сложных их превращений высвобождаются также щелочные и щелочно-земельные элементы. К потенциальным ощелачивающим продуктам относится также молоко, которое содержит не только кислые эквиваленты белков, но и калий, натрий, обладающие антиацидотическими свойствами.

При сбалансированном питании кислотно-щелочное равновесие в организме здорового, физически активного человека поддерживается соответствующими механизмами, которые при неправильно организованном питании постепенно истощаются.

Диетическое питание должно больше, чем обычное, содержать продуктов, богатых щелочными эквивалентами (валентностями). Это свежие огурцы (+31,5 мэкв), байховый чай (−53,5 мэкв), мандарины (+18,6 мэкв), лимоны (+16,1 мэкв), яблоки (+4,7 мэкв). Сравнительно много этих валентностей в белых грибах (+4,4 мэкв), шампиньонах (+1,8 мэкв), а также в зеленом горошке, стручковой фасоли, арбузе , тыкве, дыне , редисе, персиках, моркови , молоке. Кислыми валентностями, наоборот, богаты мясо, рыба, творог, яйцо, сыр, сливочное масло, растительные жиры, сахар, кондитерские изделия, шпик. Немало их в грецких орехах (−19,2 мэкв), в земляных орехах (−16,9 мэкв), бруснике (−4,6 мэкв). Преобладают кислые валентности над щелочными и в хлебобулочных изделиях, крупах, картофеле.

Способность пищи влиять на кислотно-щелочное равновесие не зависит от ее вкуса и не всегда определяется химической реакцией ее зольного остатка. Например, избыток поваренной соли или углекислого калия в молочных блюдах способствует задержке в организме кислых валентностей. И наоборот, избыток картофельных блюд в рационе иной раз сопровождается задержкой щелочных валентностей и тем самым умеренным алкалозом. Однако в последнем случае картофеля в рационе должно быть в 5-6 раз больше, чем других овощей, плодов и хлеба, вместе взятых. Разумеется, такой пищевой рацион сбалансированным назвать трудно.

Следует также знать, что длительное непрерывное действие окисляющей диеты может вызвать противоположный эффект, т. е. алкалоз . Следовательно, чтобы специально подобранная в этом отношении диета не теряла присущих ей лечебно-профилактических свойств, ее через каждые 6-7 дней надо на два-три дня сменять обычным сбалансированным питанием. Конечно, с учетом ограничения продуктов и блюд, которые не показаны при данной болезни.

Гомеостаз – одно из основных свойств живого сохранять относительное динамическое

постоянство внутренней среды т.е. химического состава, осмотического

давления, устойчивости основных физиологических функций.

Это способность организма поддерживать относительное постоянство внутренней среды (крови, лимфы, межклеточной жидкости).

Организм человека приспосабливается к постоянно меняющимся условиям внешней среды, однако при этом внутренняя среда остается постоянной и ее показатели колеблются в очень узких границах. Поэтому человек может жить в различных условиях окружающей среды. Некоторые физиологические параметры регулируются особенно тщательно и тонко, например температура тела, артериальное давление, содержание глюкозы, газов, солей, ионов кальция в крови, кислотно-щелочное равновесие, объем крови, ее осмотическое давление, аппетит многие другие. Регуляция осуществляется по принципу отрицательной обратной связи между рецепторами, улавливающими изменения указанных показателей и управляющих системами. Так, уменьшение одного из параметров улавливается соответствующим рецептором, от которого импульсы направляются в ту или иную структуру мозга, по команде которого вегетативная нервная система включает сложные механизмы выравнивания наступивших изменений. Мозг использует для поддержания гомеостаза две основные системы: вегетативную и эндокринную.

Одним из важнейших физико-химических параметров внутренней среды является кислотно-щелочное равновесие .

Количественная реакция крови характеризующая водородный показатель (рН) – отрицательный десятичный логарифм концентрации водородов и ионов.

Большинство растворов в организме – буферные растворы, у которых рН не меняется от добавления к ним небольших количеств сильной кислоты или щёлочи.

Тканевая жидкость, кровь, моча и другие жидкости – буферные растворы.

рН показатель жидкостей организма хорошо демонстрирует на сколько усваивается Na, Mg, Ca, K. Эти 4 компонента регулируют кислотность организма. Если кислотность высокая начинается заимствование веществ из других органов и полостей. Для осуществления всех функций живых структур на всех уровнях от молекулярных систем до органов необходима слабощелочная среда (рН 7,4).

Даже самое незначительное отклонение от нормального значения может стать причиной патологии.

рН меняется: в кислую – ацидоз

в щелочную – алкалоз

Сдвиг на 0,1 может привести к нарушению деятельности среда, а на 0,3 – опасен для жизни.

Нормы рН крови и других внутренних жидкостей. Метаболизм и метаболиты.

Нормы для внутренних жидкостей:

Артериальная кровь 7,35 – 7,45

Венозная кровь 7,26 – 7,36

Лимфа 7,35 – 7,40

Межклеточная жидкость 7,26 – 7,38

рН мочи 5-7 (кислотность меняется от принимаемой пищи и физических нагрузок.Щёлочность мочи – растительная пища; кислотность мочи – мясо, физические нагрузки).

Отклонения и нормы:

  1. Кислая реакция жидкости

Голодание, повышение температуры тела, сахарный диабет, нарушение функции почек, тяжёлая физическая работа.

  1. Щелочная реакция

Воспаление мочевого пузыря, диета бедная мясными продуктами, избыток минеральной воды, попадание крови в мочу.

Любой организм характеризуется совокупностью показателей, с помощью которых оценивается физико-химические свойства внутренней среды, кроме рН оценивающаяся обратным десятичным логарифмом р и р , а также ударный объём сердца, частота сердечных сокращений, артериальное давление, скорость кровотока, сопротивляемость периферических сосудов, минутный объём дыхания и др. Совокупность этих показателей характеризует функциональный уровень организма.

Метаболизм – совокупность химических реакций протекающих в живых клетках и

обеспечивающих организм веществами и энергией для основного обмена.

Метаболиты – продукты внутриклеточного обмена, которые подлежат окончательному выведению из организма.

Кислотно-основное состояние (КОС) - относительное постоянство реакции внутренней среды организма, количественно характеризующееся концентрацией Н + .

Концентрацию Н + выражают с помощью величины рН. Концентрация Н + , и соответственно величина рН, зависят от соотношения в организме кислот и оснований.

Кислоты Бренстеда - молекулы или ионы, способные отдавать Н + .

Основания Бренстеда - соединения, способные принимать Н + .

Самой распространенной кислотой организма является угольная кислота, в сутки ее образуется около 20 моль. Также в организме образуются другие неорганические (соляная, серная, фосфорная) и органические (амино-, кето-, окси-, нуклеиновые, жирные) кислоты в количестве 80 ммоль/сут.

самым сильным из них является аммиак. Основными свойствами также обладают аминокислоты аргинин и лизин, биогенные амины, например, катехоламины, гистамин, серотонин и т.д.

Биологическое значение регуляции рН, последствия нарушений

Н + - положительно заряженные частицы, они присоединяются к отрицательно заряженным группам молекул и анионов, в результате чего те меняют свой состав и свойства. Таким образом, количество Н + в жидкости определяет строение и свойства всех основных групп органических соединений – белков, нуклеиновых кислот, углеводов и липидов (амфифильных). Самое важное влияние концентрация Н + оказывает на активность ферментов. У каждого фермента существует свой оптимум рН, в котором фермент имеет максимальную активность. Например, ферменты гликолиза, ЦТК, ПФШ активны в нейтральной среде, а лизосомальные ферменты, ферменты желудка активны в кислой среде (рН=2). В результате, изменения величины рН вызывает изменение активности отдельных ферментов и приводит к нарушению метаболизма в целом

Основные принципы регуляции КОС

В основе регуляции КОС лежат 3 основных принципа:

1. постоянство рН . Механизмы регуляции КОС поддерживают постоянство рН.

2. изоосмолярность . При регуляции КОС, концентрация частиц в межклеточной и внеклеточной жидкости не изменяется.

3. электронейтральность . При регуляции КОС, количество положительных и отрицательных частиц в межклеточной и внеклеточной жидкости не изменяется.

МЕХАНИЗМЫ РЕГУЛЯЦИИ КОС

  1. Физико-химический механизм , это буферные системы крови и тканей;
  2. Физиологический механизм , это органы: легкие, почки, костная ткань, печень, кожа, ЖКТ.
  3. Метаболический (на клеточном уровне).

Нарушения КОС - классификация по механизмам? Биохимические пути компенсации.

НАРУШЕНИЯ КОС

Компенсация КОС - приспособительная реакция со стороны органа, не виновного в нарушение КОС.

Коррекция КОС – приспособительная реакция со стороны органа, вызвавшего нарушение КОС.

Выделяют два основных вида нарушений КОС – ацидоз и алкалоз.

Ацидоз – абсолютный или относительный избыток кислот или дефицит оснований.

Алкалоз – абсолютный или относительный избыток оснований или дефицит кислот.

Ацидоз или алкалоз не всегда сопровождаются заметным изменением концентрации Н + , так как постоянство рН поддерживают буферные системы. Такие ацидозы и алкалозы называются компенсированными (у них рН в норме). АН ↔ А - + Н + , Н + + B - ↔ BH

Если при ацидозах или алкалозах буферная емкость израсходована, величина рН изменяется и наблюдается: ацидемия – снижение величины рН ниже нормы, или алкалемия - повышение величины рН выше нормы. Такие ацидозы и алкалозы называются декомпенсированными .

В широком смысле понятие "физико-химические свойства" организма включает всю совокупность составных частей внутренней среды, их связей друг с другом, с клеточным содержимым и с внешней средой. Применительно к задачам данной монографии представлялось целесообразным выбрать физико-химические параметры внутренней среды, имеющие жизненно важное значение, хорошо "гомеостазированные" и вместе с этим относительно полно изученные с точки зрения конкретных физиологических механизмов, обеспечивающих сохранение их гомеостатических границ. В качестве таких параметров выбраны газовый состав, кислотно-щелочное состояние и осмотические свойства крови. По существу в организме нет отдельных изолированных систем гомеостазирования указанных параметров внутренней среды.

Кислотно-щелочной гомеостаз

Кислотно-щелочное равновесие является одним из важнейших физико-химических параметров внутренней среды организма. От соотношения водородных и гидроксильных ионов во внутренней среде организма в значительной мере зависят активность ферментов, направленность и интенсивность окислительно-восстановительных реакций, процессы расщепления и синтеза белка, гликолиз и окисление углеводов и жиров, функции ряда органов, чувствительность рецепторов к медиаторам, проницаемость мембран и т. д. Активность реакции среды определяет способность гемоглобина связывать кислород и отдавать его тканям. При изменении реакции среды меняются физико-химические характеристики коллоидов клеток и межклеточных структур - степень их дисперсности, гидрофилии, способность к адсорбции и другие важные свойства.

Соотношение активных масс водородных и гидроксильных ионов в биологических средах зависит от содержания в жидкостях организма кислот (донаторов протонов) и буферных оснований (акцепторы протонов). Принято активную реакцию среды оценивать по одному из ионов (Н +) или (ОН -), чаще по иону Н + . Содержание в организме Н + определяется, с одной стороны, прямым или опосредованным через углекислоту образованием их в ходе обмена белков, жиров и углеводов, а с другой - поступлением их в организм или выведением из него в виде нелетучих кислот или углекислого газа. Даже относительно небольшие изменения сН + неизбежно ведут к нарушению физиологических процессов, а при сдвигах за известные пределы - и к гибели организма. В связи с этим величина pH, характеризующая состояние кислотно-щелочного равновесия, является одним из самых "жестких" параметров крови и колеблется у человека в узких пределах - от 7,32 до 7,45. Сдвиг pH на 0,1 за указанные границы обусловливает выраженные нарушения со стороны дыхания, сердечно-сосудистой системы и др.; снижение pH на 0,3 вызывает ацидотическую кому, а сдвиг pH на 0,4 зачастую несовместим с жизнью.

Обмен кислот и оснований в организме теснейшим образом связан с обменом воды и электролитов. Все эти виды обмена объединены законами электронейтральности, изоосмолярности и гоместатическими физиологическими механизмами. Для плазмы закон электронейтральности может быть проиллюстрирован данными табл. 20.

Таблица 20. Концентрация ионов плазмы (Hermann Н., Cier J., 1969)
Катионы Концентрация Анионы Концентрация
мг/л ммоль/л мг/л ммоль/л
Na + 3 300 142 С1 - 3650 103
К + 180-190 5 НСО - 3 1650 27
Са 2+ 100 2,5 Белки 70000 7,5-9
Mg 2+ 18-20 0,5 РO 2- 4 95-106 1,5
SO 2- 4 45 0,5
Прочие элементы Примерно 1,5 Органические кислоты Примерно 5
Всего. . . 155 ммоль/л Всего. . . 155 ммоль/л

Общее количество катионов плазмы составляет 155 ммоль/л, из них 142 ммоль/л приходятся на долю натрия. Общее количество анионов также составляет 155 ммоль/л, из них 103 ммоль/л приходятся на долю слабого основания С1 - и 27 ммоль/л - на долю HCO - 3 (сильное основание). Г. Рут (1978) считает, что HCO - 3 и анионы белка (примерно 42 ммоль/л) составляют главные буферные основания плазмы. Ввиду того, что концентрация ионов водорода в плазме составляет всего 40·10 -6 ммоль/л, кровь является хорошо буферированным раствором и обладает слабощелочной реакцией. Анионы белка, особенно ион НСО - 3 тесно связаны, с одной стороны, с обменом электролитов, с другой - с кислотно-щелочным равновесием, поэтому правильная трактовка изменений их концентрации имеет важное значение для понимания процессов, происходящих в сфере обмена электролитов, воды и Н + .

Кислотно-щелочное равновесие поддерживается мощными гомеостатическими механизмами. В основе этих механизмов лежат особенности физико-химических свойств крови и физиологические процессы, в которых принимают участие системы внешнего дыхания, почки, печень, желудочно-кишечный тракт и др.

Физико-химические гомеостатические механизмы

Буферные системы крови и тканей. Как в условиях нормальной жизнедеятельности, так и при воздействии на организм чрезвычайных факторов, поддержание кислотно-щелочного гомеостаза обеспечивается в первую очередь физико-химическими регуляторными механизмами.

  • Особое место среди этих механизмов занимает карбонатная буферная система [показать]

    Согласно закону электролитической диссоциации, отношение произведения концентрации ионов к концентрации недиссоциированных молекул - величина постоянная:

    (H +) (HCO - 3)
    (H 2 CO 3)
    (Na +) (HCO - 3)
    (NaHCO 3)

    Ион HCO - 3 является общим для каждого компонента системы, и поэтому этот ион, образующийся из сильно диссоциирующей соли NaHCO 3 , будет подавлять образование аналогичного иона из слабой Н 2 СО 3 , т. е. практически все количество HCO - 3 в бикарбонатном буфере происходит от диссоциации NaHCO 3 . Поэтому уравнение (1) можно представить следующим образом:

    (H +) (NaHCO 3)
    (H 2 CO 3)

    а по предложению Sörensen, символом для обозначения активной реакции принят рН = -lg (Н +). В окончательном виде уравнение Хендерсона - Гассельбальха для карбонатного буфера oбычно представляют следующим образом:

    H 2 CO 3
    NaHCO 3

    где рК = -lgK. Следовательно, карбонатный буфер состоит из слабой Н 2 СО 3 и натриевой соли ее аниона (сильного основания НСО - 3 -NaHCO 3 . В нормальных условиях в плазме бикарбоната в 20 раз больше, чем угольной кислоты. При контакте этого буфера с кислотами последние нейтрализуются щелочным компонентом буфера с образованием слабой Н 2 СО 3 . Образовавшийся затем углекислый газ возбуждает дыхательный центр, и весь избыток углекислого газа удаляется из крови с выдыхаемым воздухом. Карбонатный буфер способен нейтрализовать и избыток оснований, которые будут связаны углекислотой с образованием NaHCO 3 и последующим его выделением почками.

    Буферная емкость карбонатной системы составляет 7-9% от общей буферной емкости крови, но важность ее весьма велика вследствие того, что она тесно связана с другими буферными системами и ее состояние зависит также от функций, участвующих в поддержании кислотно-щелочного гомеостаза выделительных органов. Таким образом, она является чувствительным индикатором кислотно-щелочного равновесия и определение ее компонентов широко используется для диагностики его расстройств.

  • Другой буферной системой плазмы является фосфатный буфер, образованный одно- и двухосновными фосфатными солями [показать] :

    Фосфатный буфер, образованный одно- и двухосновными фосфатными солями:

    NaH 2 PO 4 1
    Na 2 PO 4 4

    Одноосновные фосфорные соли являются слабыми кислотами, а двухосновные соли имеют ясно выраженную щелочную реакцию. Принцип действия фосфатного буфера аналогичен карбонатному. Непосредственная роль фосфатного буфера в крови незначительна; этот буфер имеет гораздо большее значение в почечной регуляции кислотно-щелочного гомеостаза. Ему принадлежит также значительная роль в регуляции активной реакции некоторых тканей. В крови же его действие главным образом сводится к поддержанию постоянства и воспроизводству бикарбонатного буфера. В самом деле, "агрессия" кислот вызывает в системе, содержащей карбонатный и фосфатный буферы, увеличение содержания Н 2 СО 3 и уменьшение содержания NaНCО 3 . Благодаря одновременному присутствию в растворе фосфатного буфера происходит обменная реакция:

    т. е. избыток Н 2 СО 3 устраняется, а концентрация NaHCО 3 увеличивается, поддерживая постоянство выражения:

    H 2 CO 3 1
    NaHCO 3 20
  • Третьей буферной системой крови являются белки [показать]

    Буферные свойства белков определяются их амфотерностью. Белки могут диссоциировать с образованием как Н + , так и ОН - ионов. Характер диссоциации зависит от химической природы белка и от реакции среды. Буферная емкость белков плазмы сравнительно с бикарбонатами невелика. Наибольшая буферная емкость крови (до 75%) приходится на гемоглобин. В гемоглобине человека содержится 8,1% гистидина - аминокислоты, включающей как кислые (СООН), так и основные (NH 2) группы. Буферные свойства гемоглобина обусловлены возможностью взаимодействия кислот с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калиевой соли и свободного гемоглобина, обладающего свойствами очень слабой органической кислоты. Таким образом могут связываться весьма значительные количества ионов Н + . Способность связывать Н + ионы выражена у солей гемоглобина сильнее, чем у солей оксигемоглобина (НbО 2), т. е. Нb является более слабой органической кислотой, чем НbO 2 . Поэтому при диссоциации НbO 2 в тканевых капиллярах на О 2 и Нb появляется дополнительное количество оснований (щелочно-реагирующих солей гемоглобина), способных связывать углекислоту, противодействуя снижению pH. Наоборот, оксигенация гемоглобина приводит к вытеснению Н 2 СО 2 из гидрокарбоната (рис. 38).

    Эти механизмы, очевидно, могут вступить в действие не только при превращении артериальной крови в венозную и обратно, но и во всех тех случаях, когда изменяется Рсо 2 . Гемоглобин способен также связывать углекислый газ с помощью свободных аминогрупп, образуя карбгемоглобин:

Таким образом, расход гидрокарбоната NaHCO 3 в системе карбонатного буфера при "агрессии" кислот компенсируется за счет щелочных протеинатов, фосфатов и солей гемоглобина.

Чрезвычайно важное значение имеет также обмен ионов Сl - и НСО - 3 между эритроцитами и плазмой. Когда концентрация углекислоты в плазме увеличивается, концентрация С1 - в ней уменьшается, так как Сl - переходит в эритроциты. Основным источником Сl - в плазме является хлорид натрия; следовательно, повышение концентрации угольной кислоты вызывает разрыв связи между Na + и Сl - и их разделение, причем Сl - входят в эритроциты, a Na + остаются в плазме, поскольку мембрана эритроцитов для них практически непроницаема. Создающийся избыток Na + соединяется с избытком НСО - 3 , образуя бикарбонат натрия, восполняя его убыль, возникшую в результате закисления крови, и поддерживая тем самым постоянство pH крови.

Снижение Рсо 2 вызывает обратный процесс: Сl - выходят из эритроцитов, соединяясь с избытком Na + , освободившимся из бикарбоната, и предупреждая этим защелачивание крови. Указанные перемещения ионов через полупроницаемую мембрану эритроцитов объясняются одним из правил Доннана, гласящим, что отношения концентраций ионов, способных проходить через мембрану, должны быть равны по обе стороны мембраны. Это процесс имеет исключительную важность для поддержания pH крови, Cl - эр /Cl - пл = 0,48-0,52 может служить одним из показателей состояния кислотно-щелочного гомеостаза.

Большая роль в поддержании кислотно-щелочного гомеостаза принадлежит буферным системам тканей, которые поддерживают постоянство внутритканевого pH и участвуют в регуляции pH крови. В тканях имеются карбонатная и фосфатная буферные системы. Однако особую роль играют тканевые белки, которые способны связывать очень большие количества кислот и щелочей. Наиболее выраженная буферная емкость у коллагеновой субстанции соединительной ткани, способной также связывать кислоты путем их адсорбции.

Гомеостатические обменные процессы. Весьма существенную роль в регуляции кислотно-щелочного баланса играют обменные процессы, происходящие в тканях, особенно в печени, почках, мышцах. Органические кислоты, могут подвергаться окислению с образованием либо летучих, легко выделяющихся из организма кислот (главным образом углекислоты), либо превращаясь в некислые вещества. Они могут соединяться с продуктами белкового обмена, полностью или частично утрачивая свои кислые свойства (например, соединение бензойной кислоты с глицином); молочная кислота, в больших количествах образующаяся при усиленной мышечной работе, ресинтезируется в гликоген, кетоновые тела - в высшие жирные кислоты и затем в жиры и т. д. Неорганические кислоты могут быть нейтрализованы солями калия, натрия, освобождающимися при дезаминировании аминокислот аммиаком с образованием аммонийных солей и т. д. Щелочи нейтрализуются главным образом молочной кислотой, которая при сдвиге активной реакции тканей в щелочную сторону усиленно образуется из гликогена. Кислотно-щелочной гомеостаз поддерживает и ряд физико-химических процессов: растворение сильных кислот и щелочей в средах с низкой диэлектрической постоянной (например, в липидах), связывание кислот и щелочей различными органическими веществами в недиссоциированные и нерастворимые соли, обмен ионов между клетками различных тканей и кровью и др.

Отмечая важность рассмотренных выше механизмов поддержания кислотно-щелочного гомеостаза, следует признать, что в конечном итоге узловым звеном в рассматриваемой гомеостатической системе является клеточный обмен, так как передвижение анионов и катионов между вне- и внутриклеточными секторами н их распределение в этих секторах являются прежде всего результатом деятельности клеток и подчинены потребностям этой деятельности.

Механизмы, обеспечивающие этот обмен, весьма разнообразны. Передвижение ионов зависит от градиента осмотического давления, проницаемости мембран, определяется динамическим электрическим потенциалом мембран и т. п.

Физиологические гомеостатические механизмы

Второй эшелон поддержания кислотно-щелочного гомеостаза представлен физиологическими регуляторными механизмами, среди которых главная роль принадлежит легким и почкам.

Благодаря буферам крови органические кислоты, образующиеся в процессе обмена, или кислоты, введенные в организм извне, не изменяют реакции крови, а лишь вытесняют углекислоту из ее соединения с основаниями; избыток же углекислого газа выводится легкими. Высокая диффузионная способность углекислого газа обеспечивает быстрое прохождение газа через мембраны и выведение его из организма. Скорость диффузии любого газа обратно пропорциональна квадратному корню из его молекулярной массы, а количество диффундирующего газа пропорционально его растворимости в жидкости.

Объединение этих двух законов диффузии позволяет сделать вывод, что углекислый газ диффундирует примерно в 20 раз интенсивнее кислорода:

где 0,545 и 0,023 - коэффициенты растворимости соответственно СО 2 и О 2 в воде при t=38°C. Переход углекислого газа из крови в альвеолярный воздух объясняется имеющимся здесь градиентом Рсо 2 . Облегчается этот процесс двумя механизмами: переходом Нb в НbО 2 , вытесняющий как более сильная кислота углекислый газ из крови, и действием угольной ангидразы, которой принадлежит большая роль в освобождении свободной углекислоты в легких. Количество углекислого газа, выводимого из легких, зависит прежде всего от амплитуды и частоты дыхательных движений. Параметры дыхания регулируются в зависимости от содержания углекислоты в организме. В целом же отношение между Рсо 2 в крови и легочной вентиляцией выражается следующим образом (Рут Г., 1978):

где Рсо 2 и Р (барометрическое давление) выражаются в миллиметрах ртутного столба, продукция СО 2 - в молях, а альвеолярная вентиляция - в литрах.

Роль почек в поддержании кислотно-щелочного гомеостаза определяется главным образом их кислото-выделительной функцией. В физиологических условиях почки выделяют кислую мочу, pH которой колеблется от 5,0 до 7,0. Величина pH мочи может достигать 4,5, и, следовательно, концентрация свободных ионов Н + может в 800 раз превышать содержание их в плазме крови. Подкисление мочи в проксимальных и дистальных канальцах является результатом секреции ионов Н + , в образовании и секреции которых (ацидогенезе) важная роль принадлежит ферменту карбоангидразе (КА), содержащемуся в клетках канальцев. Фермент ускоряет достижение равновесия между медленной реакцией гидратации и дегидратации угольной кислоты (Н 2 СО 3):

Скорость этой некатализируемой реакции возрастает при снижении pH. Ацидогенез обеспечивает выведение кислых компонентов фосфатного буфера (в процессе образования кислой мочи происходит превращение: НРО 2- 4 + H + ---> H 2 PO 4), а также слабых органических кислот: молочной, лимонной, β-оксимасляной и др. Процесс выделения эпителием почечных канальцев Н + происходит против электрохимического градиента с затратой большого количества энергии и требует одновременной реабсорбции эквивалентного количества ионов Na + . Уменьшение реабсорбции натрия, как правило, сопровождается снижением ацидогенеза. Реабсорбированный в результате ацидогенеза Na + образует в крови вместе с НСО - 3 выделяемым из эпителия почечных канальцев, бикарбонат натрия. Ионы Н + , секретируемые клетками почечных канальцев, вступают во взаимодействие с анионами буферных соединений. Ацидогенез обеспечивает выделение преимущественно анионов карбонатного и фосфатного буферов, а также анионов слабых органических кислот.

При фильтрации соединений, содержащих анионы сильных органических и неорганических кислот (Cl - , SO 2- 4), в почках включается другой механизм - аммониогенез, обеспечивающий выведение кислот и предохраняющий от снижения pH мочи ниже критического уровня (рис. 39). Аммониогенез происходит на уровне дистальных канальцев и собирательных трубок. Образующийся в эпителии почечных канальцев NH 3 поступает в просвет канальцев, где взаимодействует с Н + , происходящими от ацидогенеза. Таким образом, NH3 обеспечивает, с одной стороны, связывание Н + , а с другой - выведение анионов сильных кислот в виде аммонийных солей, в составе которых ионы Н + не оказывают повреждающего воздействия на эпителий канальцев. Источником аммония является в основном глутамин крови. Около 60% NH 3 образуется из глутамина путем его дезаминирования иод воздействием фермента глутаминазы I. Остальные 40% аммиака, образуются из других аминокислот (Pitts R. F., 1964)

Так как аммониогенез тесно связан с ацидогенезом, очевидно, что концентрация аммония в моче находится в прямой зависимости от концентрации в ней Н + . Закисление крови, приводящее к снижению pH канальцевой жидкости, способствует диффузии аммиака из клеток. Интенсивность экскреции аммония определяется также скоростью его продукции и скоростью потока мочи, от которой зависит время контакта между канальцевой жидкостью и эпителием почечного канальца, и, следовательно, своевременное удаление образующегося иона из клетки.

В регуляции экскреции почками кислот важную роль выполняют хлориды. В частности, увеличение реабсорбции НСО - 3 , как правило, сопровождается увеличением реабсорбции хлоридов. Ион С1 - в общем пассивно следует за катионом Na + . Повышение концентрации гидрокарбонатов НСО - 3 в моче обычно сопровождается уменьшением содержания в них хлоридов таким образом, что сумма этих анионов оказывается эквивалентной количеству Na + (Matthews D. L., O’Connor W. J., 1968). Изменение транспорта хлоридов является следствием первичного изменения секреции ионов Н + и реабсорбции бикарбоната и обусловлено необходимостью поддержания электронейтральности канальцевой мочи. Согласно другой точке зрения, первично изменяется транспорт хлоридов.

Кроме механизмов ацидо- и аммониогенеза, в сохранении иона Na + при закислении крови существенная роль принадлежит секреции ионов К + . Калий, освобождающийся из клеток при снижении pH крови, экскретируется почечными канальцами в повышенном количестве; одновременно при этом происходит увеличенная реабсорбция Na + . Этот обмен регулируется минералокортикоидами (альдостерон, дезоксикортикостерон). В нормальных условиях почки выделяют преимущественно кислые продукты обмена. При увеличении поступления в организм оснований реакция мочи становится более щелочной вследствие усиленного выделения бикарбоната и основного фосфата.

Определенное место в выделительной регуляции кислотно-щелочного гомеостаза занимает желудочно-кишечный тракт. Клетки слизистой оболочки желудка секретируют НСl, образующую из ионов Сl - , поступающих из крови, и ионов Н + , происходящих из желудочного эпителия. В обмен на хлориды в кровь в процессе желудочной секреции поступает бикарбонат. Защелачивания крови, однако, при этом не происходит, так как ионы Сl - желудочного сока вновь всасываются в кровь в кишечнике. Эпителий слизистой оболочки кишечника секретирует щелочной сок, богатый бикарбонатами. При этом ионы Н + переходят в кровь в виде НС1. Кратковременный сдвиг реакции сразу же уравновешивается обратным всасыванием бикарбоната в кишечнике. В то время как почки концентрируют и выделяют из организма главным образом Н + и одновалентные катионы, кишечный тракт концентрирует и выделяет двухвалентные щелочные ионы. При кислой диете увеличивается выделение главным образом двухвалентных Са 2+ и Mg 2+ , при щелочной - выделение всех катионов.

Нарушения кислотно-щелочного равновесия

Гомеостатическая система кислотно-щелочного равновесия по своей природе неспособна продолжительное время беспрерывно находиться в состоянии напряжения при наличии возмущающих воздействий. Расстройства кислотно-щелочного гомеостаза могут возникнуть в результате длительного беспрерывного действия даже умеренных по интенсивности возмущающих факторов или в том случае, если влияние возмущающих факторов кратковременно, но по своей интенсивности они выходят за пределы возможностей экстренно мобилизуемых гомеостатических механизмов. Абсолютная или относительная недостаточность гомеостатических механизмов (или их резервных возможностей) может стать основой нарушений кислотно-щелочного равновесия внутренней среды организма и привести к возникновению ацидоза или алкалоза.

В настоящее время ацидозом называется такое нарушение кислотно-щелочного равновесия, при котором в крови появляется относительный или абсолютный избыток кислот. Алкалоз характеризуется абсолютным или относительным увеличением количества оснований в крови. По степени компенсации все ацидозы и алкалозы подразделяют на компенсированные и некомпенсированные. Компенсированные ацидоз и алкалоз - это также состояния, когда изменяются абсолютные количества Н 2 СО 3 и NaHCO 3 , но отношение NаНСО 3 /Н 2 СО 3 остается в нормальных пределах (около 20:1). При сохранении указанного отношения pH крови существенно не изменяется. Соответственно некомпенсированными ацидозами и алкалозами называют такие состояния, когда изменяется не только общее количество Н 2 СО 3 и NaHCO 3 , но и их соотношение, результатом чего является сдвиг pH крови в ту или другую сторону (Weisberg Н. F., 1977).

Понятия "негазовый ацидоз" и "метаболический ацидоз" (или алкалоз) употребляются как синонимы. Однако такое отождествление терминов не может считаться оправданным. Негазовый ацидоз (алкалоз) - понятие собирательное, включающее все возможные формы нарушений кислотно-щелочного гомеостаза, ведущие к первичному изменению содержания бикарбоната крови, т. е. знаменателя дроби в уравнении:

H 2 CO 3
NaHCO 3

Развитие негазового ацидоза может быть обусловлено:

  1. увеличением поступления кислот извне;
  2. нарушением обмена веществ, сопровождающимся накоплением органических кислот, неспособностью почек выводить кислоты, либо, напротив, чрезмерным выведением буферных оснований через почки и желудочно-кишечный тракт.

Следовательно, метаболическими ацидозами в точном смысле этого слова можно называть лишь такие ацидозы, которые развиваются вследствие нарушений обмена веществ, приводящих к избыточному накоплению кислот. Ацидозы, обусловленные затруднением выведения кислот из организма или чрезмерной потерей буферных анионов, следует отнести к категории выделительных ацидозов.

Исходя из приведенных соображений, классификацию нарушений кислотно-щелочного равновесия можно представить в виде следующей схемы.

  1. Газовый-дыхательный (накопление углекислоты):
    1. затруднение выведения углекислого газа при нарушениях дыхания;
    2. высокая концентрация углекислого газа в окружающей среде (замкнутые помещения, шахты, подводные лодки и др.);
    3. неисправности наркозно-дыхательной аппаратуры (редко!).
  2. Негазовый (накопление нелетучих кислот):
    1. Метаболический:
      1. кетоацидоз вследствие увеличения продукции или нарушения окисления и ресинтеза кетоновых тел (сахарный диабет, голодание, нарушения функции печени, лихорадка, гипоксия и др.)
      2. лактат-ацидоз вследствие увеличения продукции, снижения окисления и ресинтеза молочной кислоты (гипоксия, нарушение функций печени, инфекции и др.);
      3. ацидоз при накоплении прочих органических и неорганических кислот (обширные воспалительные процессы, ожоги, травмы и т. д.).
    2. Выделительный:
      1. задержка кислот при почечной недостаточности (диффузный нефрит, уремия);
      2. потеря щелочей, почечная (почечный канальцевый ацидоз, обессоливающий нефрит, гипоксия, интоксикация сульфаниламидами); потеря щелочей, гастроэнтеральная (диарея, гиперсаливация)
    3. Экзогенный:
      1. длительное употребление кислой пищи;
      2. прием лекарств (NH 4 Cl);
      3. прием кислот внутрь (редко!)
    4. Комбинированные формы:
      1. кетоацидоз + лактатацидоз;
      2. метаболический + выделительный;
      3. разные другие сочетания.
  3. Смешанный (газовый + негазовый) при асфиксии, сердечно-сосудистой недостаточности, тяжелых состояниях с нарушением сердечно-сосудистой и дыхательной систем и т. д.).
  1. Газовый-дыхательный:
    1. усиленное выведение углекислого газа при нарушениях внешнего дыхания гипервентиляционного характера;
    2. гипервентиляционное управляемое дыхание
  2. Негазовый:
    1. Выделительный:
      1. задержка щелочей (усиление реабсорбцип щелочных анионов (оснований) почками);
      2. потеря кислот (рвота при пилоростенозе, кишечная непроходимость, токсикоз беременности; гиперсекреция желудочного сока);
      3. гипохлоремический-"метаболический"
    2. Экзогенный:
      1. длительный прием щелочной пищи;
      2. введение лекарств (бикарбонат и другие щелочные вещества)

СМЕШАННЫЕ ФОРМЫ АЦИДОЗОВ И АЛКАЛОЗОВ (ПРИМЕРЫ)

  1. Газовый алкалоз + метаболический ацидоз (высотная болезнь, кровопотеря);
  2. Газовый алкалоз + почечный канальцевый ацидоз (сердечная недостаточность и лечение карбоангид-разными ингибиторами);
  3. Артериальный газовый алкалоз + венозный газовый ацидоз (дыхание чистым кислородом под повышенным давлением) и др.

Гомеостатические процессы при ацидозах и алкалозах и их нарушения. При развитии ацидоза в буферных системах и регуляторных механизмах происходят следующие изменения. Если ацидоз вызван избытком какой-либо сильной кислоты, например, НС1, то произойдут следующие реакции:

  1. НС1 + NaHCO 3 Н 2 СO 3 + NaCl.

    Следовательно,

    т. е. возникают некоторый избыток Н 2 СO 3 и некоторый дефицит NaHCO 3 .

  2. Избыток Н 2 СO 3 (Н + и СО 2) вызывает усиление деятельности дыхательного центра, что приводит к гипервентиляции и вымыванию СО 2 из крови.
  3. Избыток Н 2 СO 3 NaHCO 3 + NaH 2 PO 4 . Эта реакция обеспечивает в некоторой степени ликвидацию дефицита NaHCO 3 .
  4. NaHCO 3 восполняется в значительной мере за счет обмена ионов между эритроцитами и плазмой по правилу Доннана, т. е. ионы С1 - входят в эритроциты, создавая в плазме избыток ионов Na + , которые, соединяясь с избытком НСО - 3 , образуют бикарбонат.
  5. HCl + Na 2 HPO 4 = NaH 2 PO 4 + NaCl, т. е. происходит частичная нейтрализация кислоты основными фосфатами.
  6. Кислота выделяется почками в виде солей Na + и К + или в виде аммонийных солей. Включение указанных механизмов обеспечивает компенсацию возникшего ацидоза, который может перейти в некомпенсированную форму, если произойдет истощение буферных систем или наступит недостаточность выделительных процессов.

Наиболее часто встречаются следующие формы ацидоза.

Метаболический ацидоз, возникающий вследствие накопления промежуточных кислых продуктов обмена, например кетоновых тел (ацетоуксусная, β-оксимасляная кислоты), молочной кислоты и других органических кислот. Гиперкетонемия может развиться в результате усиленной продукции кетоновых тел, например при уменьшении содержания гликогена в печени, а также при интенсивном распаде жиров; при нарушениях цикла трикарбоновых кислот, приводящих к торможению окисления кетоновых тел; при кислородном голодании, уменьшении продукции НАДФ и торможении их ресинтеза. Нередко имеет место сочетанное действие нескольких факторов, обусловливающих гиперкетонемию (например, при панкреатическом диабете). Концентрация кетоновых тел при патологических состояниях может возрастать в десятки и сотни раз. Значительные количества кетоновых тел выделяются почками в виде солей натрия и калия, что может привести к большим потерям щелочных ионов и к развитию некомпенсированного ацидоза. Такое состояние бывает при сахарном диабете, голодании (особенно углеводном), высокой лихорадке, тяжелой инсулиновой гипогликемии, при некоторых видах наркоза.

Ацидоз вследствие накопления молочной кислоты встречается довольно часто, даже у здоровых людей. Кратковременный ацидоз возникает при усиленной мышечной работе, особенно у нетренированных людей, когда увеличивается концентрация молочной кислоты вследствие относительного недостатка кислорода. Длительный ацидоз подобного рода встречается при тяжелых поражениях печени (цирроз, токсические дистрофии), при декомпенсации сердечной деятельности, а также при уменьшении поступления в организм кислорода, связанном с недостаточностью внешнего дыхания, и при других формах кислородного голодания.

Негазовый выделительный ацидоз вследствие уменьшения выделения нелетучих кислот наблюдается при заболеваниях почек, когда выделение кислых фосфатов, сульфатов, органических кислот затруднено, заторможен аммониогенез, в то время как буферные основания выделяются более или менее нормально. В результате может возникнуть ацидоз на почве относительного или абсолютного избытка Н + . Такой ацидоз встречается при хроническом диффузном гломерулонефрите, нефросклерозе н некоторых других тяжелых поражениях почек. Декомпенсированная форма обычно отмечается при уремии. Усиленное выделение бикарбоната с мочой происходит при некоторых интоксикациях, например при длительном применении сульфаниламидов, которые тормозят активность карбоангидразы и приводят к ослаблению ацидогенеза. Ацидоз при нефритах развивается как следствие первичной недостаточности выведения органических кислот с мочой в свободном виде и в виде аммонийных солей. Вместе с тем показано, что реабсорбция бикарбоната в почках при их поражении уменьшена. Реакция мочи при почечном ацидозе обычно нейтральная или щелочная. Компенсация ацидоза на фоне поражения почек может осуществляться только за счет мобилизации большого количества катионов и прежде всего натрия из всех его соединений. Существенным резервом натрия при этом является костная система. Негазовый ацидоз может развиться также при увеличенном выделении щелочей через желудочно-кишечный тракт, например при поносах у детей или при рвоте щелочным кишечным соком.

Газовый ацидоз характеризуется накоплением угольной кислоты в крови в результате недостаточности функции внешнего дыхания либо вследствие присутствия более или менее значительных количеств углекислого газа во вдыхаемом воздухе.

Возможность развития смешанных форм ацидоза базируется, в частности, на том факте, что обмен углекислого газа в легких осуществляется примерно в 25 раз интенсивнее, чем обмен кислорода. Поэтому всегда, когда выделение углекислого газа затруднено в связи с поражением легких или сердца, развивается кислородное голодание с последующим накоплением недоокисленных продуктов межуточного обмена. Умеренные компенсированные ацидозы протекают без выраженных клинических симптомов и распознаются путем исследования буферных систем крови, а также состава мочи. При углублении ацидоза одним из первых клинических симптомов является усиленное дыхание, которое при некомпенсированном ацидозе переходит в резкую одышку. Некомпенсированный ацидоз характеризуется также расстройствами со стороны сердечно-сосудистой системы и желудочно-кишечного тракта, в значительной мере обусловленными тем, что ацидоз одновременно уменьшает активность α- и β-адренорецепторов сердца, сосудов и кишечника, снижая функциональное и метаболическое действие катехоламинов.

Ацидоз приводит к увеличению содержания катехоламинов в крови, поэтому в процессе его развития сначала отмечаются усиление сердечной деятельности, учащение пульса, повышение минутного объема крови, подъем АД. Но по мере углубления ацидоза снижается активность адренорецепторов и, несмотря на повышенное содержание катехоламинов в крови, сердечная деятельность угнетается, АД падает. При этом появляются экстрасистолы и другие нарушения ритма вплоть до желудочковой фибрилляции. Установлено также, что ацидоз резко усиливает парасимпатические эффекты, вызывая бронхоспазм и усиленную секрецию бронхиальных желез. Со стороны желудочно-кишечного тракта отмечаются рвота, понос.

При избытке H + в плазме часть их перемещается внутрь клеток в обмен на K + , которые отщепляются от белков в кислой среде. В диагностическом отношении показатель концентрации K + плазмы может служить признаком выраженности "биохимической травмы" тканей организма. Кроме того, часть ионов НСОз переходит в клетки и нейтрализует ионы H + . На место НСОз из: клеток выходят С1 - , осмотическое давление внеклеточной жидкости повышается, развивается внеклеточная гипергидрия. При некомпенсированном ацидозе возникают резкие расстройства функции центральной нервной системы, появляются вначале головокружение, сонливость, а затем при развитии ацидотической комы наступает полная потеря сознания. Естественно, что ацидотические симптомы сочетаются с симптомами основного заболевания, вызвавшего ацидоз.

Алкалоз. При накоплении щелочных соединений в организме происходят следующие принципиальные изменения в гомеостатической системе кислотно-щелочного равновесия (в приведенном примере в качестве щелочного соединения условно взят NaOH).

  1. NaOH + Н 2 СO 3 NaHCO 3 + Н 2 0

    Следовательно,

    H 2 CO 3 - H 2 CO 3 израсходованная
    NaHCO 3 + NaHCO 3 образующийся

    т. е. создается некоторый избыток NaHCO 3 и дефицит Н 2 СО 3 .

  2. Дефицит Н 2 СО 3 компенсируется, во-первых, за счет выхода ионов Cl - из эритроцитов и освобождением ионов НСО - 3 из бикарбоната натрия: Cl - + NaHCO 3 NaCl + НСО 3 . (Ион НСО - 3 вместе с H + , выходящим из клеток в обмен на ионы K + , образует Н 2 СО 3 ; во-вторых, при недостатке Н 2 СО 3 снижается активность дыхательного центра, что приводит к уменьшению вентиляции и задержке выделения углекислоты из организма.
  3. NaOH + NaH 2 PO 4 Na 2 HPO 4 + H 2 O, т. е. некоторая часть щелочи связывается кислыми фосфатами.
  4. Избыток NaHCO 3 и Na 2 HPO 4 выделяется с мочой, что способствует поддержанию pH в пределах нормы.

До тех пор пока буферные системы не истощились и почки функционируют нормально, алкалоз остается компенсированным, а затем при несостоятельности поддерживающих pH механизмов может перейти в некомпенсированную форму.

Наибольшее клиническое значение имеет негазовый алкалоз, в частности его гастроэнтеральная форма, которая возникает при рвоте кислым желудочным содержимым (пилоростеноз, кишечная непроходимость). При заболеваниях почек, сопровождающихся потерей способности выделять катионы Na + , K + и др., развивается почечная форма негазового алкалоза.

Газовый алкалоз является следствием гипервентиляции, возникающей при высотной болезни, истерии, эпилепсии и других состояниях, когда усиленная деятельность дыхательного центра не связана с воздействием углекислоты, а также при чрезмерном искусственном дыхании. Симптоматика алкалоза проявляется в ослаблении дыхательной функции, повышении нервно-мышечной возбудимости, что может привести к тетании. Это связано со снижением содержания Са 2+ в плазме. Одновременно увеличивается содержание Сl - в плазме, уменьшается количество аммиака в моче (торможение аммониогенеза) и отмечается сдвиг ее реакции в щелочную сторону (результат усиленного выведения бикарбонатов). Алкалоз повышает возбудимость β-адренорецепторов в сердце, сосудах, кишечнике и бронхах, уменьшая одновременно парасимпатические эффекты. Это выражается в учащении сердцебиений, сопровождающемся падением системного АД. Со стороны желудочно-кишечного тракта отмечаются запоры, обусловленные замедлением перистальтики. Влияния алкалоза на α-адренорецепторы не обнаружено.

Смешанные формы алкалоза могут наблюдаться, например, при травмах головного мозга, сопровождающихся одышкой (газовый алкалоз) и рвотой кислым желудочным соком (негазовый алкалоз).

Комбинированные формы расстройств кислотно-щелочного равновесия могут возникать при искусственной гипервентиляции, приводящей, с одной стороны, к газовому алкалозу (усиленное вымывание углекислоты), а с другой - и к метаболическому ацидозу (нарушение диссоциации оксигемоглобина в тканях при алкалозе). Подобного рода нарушения возникают и при высотной болезни. Не всегда расстройства кислотно-щелочного равновесия сопровождаются выраженными клиническими симптомами, а как бы исподволь подтачивают защитные возможности организма, приводя впоследствии к необратимым нарушениям.

  • Бараз Л. А. О чувствительности рецепторов топкого кишечника к иопам калия. - Докл. АН СССР, 1961, т. 140, № 5, с. 1213-1216.
  • Боголюбов В. М. Патогенез и клиника водно-электролитных расстройств.- Л.: Медицина, 1968.
  • Брандис С. А., Пиловицкая В. Н. Функциональные изменения в организме при многочасовом дыхании газовой смесью с высокой концентрацией кислорода и малым содержанием углекислоты в покое и во время работы.- Физиол. журн. СССР, 1962. № 4, с. 455-463.
  • Бреслав И. С. Дыхательные рефлексы с хеморецепторов. - В кн.: Физиология дыхания. Л., 1973, с. 165-188.
  • Войткевич В. И., Волжская А. М. О возможности появления ингибитора эритропоэза в крови почечной вены при гипероксии.- Докл. АН СССР, 1970, т. 191. № 3, с. 723-726.
  • Георгиевская Л. М. Регуляция газообмена при хронической сердечной и вентиляционной недостаточности.- Л.: Медицина, 1960.
  • Гинецинский А. Г. Физиологические механизмы водно-солевого равновесия. М.-Л.: Наука, 1964.
  • Григорьев А. И., Арзамасов Г. С. Роль почек в регуляции ионного гомеостаза у здорового человека при нагрузке хлористым калием.- Физиол. человека, 1977, № 6, с. 1084-1089.
  • Дарбинян Т. М. Руководство по клинической реаниматологии.- М.: Медицина, 1974.
  • Дембо А. Г. Недостаточность функции внешнего дыхания.- Л.: Медицина, 1957.
  • Дервиз Г. В. Газы крови.- В кн.: БМЭ, 2-е изд. М.: 1958, т. 6, с. 233-241.
  • Жиронкин А. Г. Кислород. Физиологическое и токсическое действие.-Л.: Наука, 1972.
  • Зильбер А. П. Регионарные функции легких. - Петрозаводск; Карелия, 1971.
  • Коваленко Е. А., Попков В. Л., Черняков И. Н. Напряжение кислорода в тканях головного мозга собак при дыхании газовыми смесями.- В кн.: Кислородная недостаточность. Киев, 1963, с. 118-125.
  • Кондрашова М. Н. Некоторые вопросы изучения окисления и кинетики биохимических процессов,- В кн.: Митохондрии. Биохимия и морфология. М., 1967, с. 137-147.
  • Лакомкин А. И., Мягков И. Ф. Голод и жажда. - М.: Медицина, 1975.
  • Лебедева В. А. Механизмы хеморецепции. - М.-Л.: Наука, 1965.
  • Лейтес С. М., Лаптева Н. Н. Очерки по патофизиологии обмена веществ и эндокринной системы.- М.: Медицина, 1967.
  • Лосев Н. И., Кузьминых С. Б. Моделирование структуры и функции дыхательного центра.- В кн.: Моделирование болезней. М., 1973, с. 256-268.
  • Маршак М. Е. Регуляция дыхания человека.- М.: Медгиз, 1961.
  • Маршак М. Е. Материалы о функциональной организации дыхательного центра.- Вест. АМН СССР, 1962, № 8, с. 16-22.
  • Маршак М. Е. Физиологическое значение углекислоты,- М.: Медицина, 1969.
  • Маршак М. Е. Регуляция дыхания,- В кн.: Физиология дыхания. Л., 1973, с. 256-286.
  • Меерсон Ф. 3. Общий механизм адаптации и профилактики.- М.: Медицина, 1973.
  • Наточин Ю. В. Ионорегулирующая функция почек.-Л.: Наука, 1976.
  • Паточин Ю. В. Клиническое значение нарушений осмотического и ионного гомеостаза.- Тер. арх., 1976, № 6, с. 3-И.
  • Репин И. С. Изменение электроэнцефалограммы и реактивности мозга в условиях гиперкапнии.- Пат. физиол., 1961, № 4, с. 26-33.
  • Репин И. С. Влияние гиперкапнии на спонтанные и вызванные потенциалы в интактной и изолированной коре мозга у кроликов. - Бюлл. экспер. биол., 1963, № 9, с. 3-7.
  • Сайке М. К., Макникол М. У., Кемпбелл Э. Дж. М. Дыхательная недостаточность: Пер. с англ.- М.: Медицина, 1974.
  • Северин С. Е. Внутриклеточный обмен углеводов и биологическое окисление.- В кн.: Химические основы процессов жизнедеятельности. М., 1962, с. 156-213.
  • Семенов Н. В. Биохимические компоненты и константы жидких сред и тканей человека.- М.: Медицина, 1971.
  • Соколова М. М. Почечные и экстраренальные механизмы гомеостаза калия при калиевой нагрузке.- Физиол. журн. СССР, 1975, № 3. с. 442-448.
  • Судаков К. В. Биологические мотивации. М.: Медицина, 1971.
  • Франкштейн С. И., Сергеева 3. Н. Саморегуляция дыхания в норме и патологии.- М.: Медицина, 1966.
  • Франкштейн С. И. Дыхательные рефлексы и механизмы одышки.- М.: Медицина, 1974.
  • Финкинштейн Я. Д., Айзман Р. И., Тернер А. Я., Пантюхин И. В. Рефлекторный механизм регуляции калиевого гомеостаза.- Физиол. журн. СССР, 1973, № 9, с. 1429-1436.
  • Черниговский В. Н. Интерорецепторы.- М.: Медгиз, 1960.
  • Шик Л. Л. Вентиляция легких,- В кн.: Физиология дыхания. Л., 1973, с. 44-68.
  • Andersson В. Thirst and brain control of water balance.-Am. Sci., 1973, v. 59, p. 408-415.
  • Apfelbaum М., Baigts F. Pool potassique. К echangeable, volumes de distri-mition. apports et pertes, methodes de mesures, chiffres normaux.- Coeur Med. intern., 1977, v. 16, p. 9-14.
  • (Blaga C., Crivda S. Блажа К., Кривда С.) Теория и практика оживления в хирургии.- Бухарест, 1963.
  • Blood and other body fluids Ed. Dimmer D. S.- Washington. 1961.
  • Burger E., Mead J. Static, properties of lungs after oxygen exposure.- J. appl. Physiol., 1969, v. 27, p. 191-195.
  • Cannon P., Frazier L., Нugnes R. Sodium as toxic ion in potassium deficiency.- Metabolism, 1953, v. 2, p. 297-299.
  • Carpenter C., Davis I., Ayers C. Concerning the role of arterial baroreceptors in the-control of aldosterone secretion.-J. clin. Invest., 1961, v. 40, p. 1160-1162.
  • Cohen J. To wards a physiologic nomenclature for in vivo disturbances of acid-base balance.-U.S. Dep. Commer. Nat. Bur. Stand. Spec. Pub]., 1977. № 450, p. 127-129.
  • Comroe J. The physiology of respiration. - Chicago, 1965.
  • Cort J., Lichardus B. Natriuretic hormone editorial. - Nephron, 1968, v. 5r p. 401-406.
  • Сох М., Sterns B., Singer I. The defense against hyperkaliemia. the roles of insulin and adosterone.- New Engl. J. Med., 1978, v. 299, p. 525-532.
  • Dejours P. Control of respiration by arterial chemoreceptors. - Ann. N. Y. Acad. Sci., 1963, v. 109, p. 682-683.
  • Dibona G. Neurogenic regulation of renal tubular sodium reabsorption. - Amer. J. Physiol., 1977, v. 233, p. 73-81.
  • Dibona G. Neural control of renal tubular sodium reabsorption on the dos- Fed. Proc., 1978, v. 37, p. 1214-1217.
  • Delezal L. The effect of long lasting oxygen inhalation upon respiratory parameters in man. - Physiol, bohemoslov.. 1962, v. 11, p. 148-152.
  • Downes J., Lambertsen C. Dynamic characteristic of ventilatory depression in man on abrupt administration of O 2 . - J. appl. Physiol., 1966, v. 21, p. 447- 551.
  • Dripps R., Comroe J. The effect of the inhalation of high and low oxygen concentration in respiration pulse rate, ballistocardiogram and arterial oxygen saturation of normal individuals.-Am. J. Physiol., 1947, v. 149, p. 277-279.
  • Eriksson L. Effect of lowered CSF sodium concentration on the central control of fluid balance.-Acta physiol, scand. 1974 v. 91 p. 61-68.
  • Fitzimons J. A new hormon to control thirst.-New Sci. 1971, v. 52, p. 35-37.
  • Gardin Y., Leviel F., Fouchard М., Puillard M. Regulation du pTI extracellulaire et intracellulaire.-Conf. anesth. et reanim., 1978, № 13, p. 39-48.
  • Giebisch G., Malnic G., Klose R. M. et al. Effect of ionic substitutiones on distal potential differences in rat kidney.-Am. J. Physiol., 1966, v. 211, p. 560-568.
  • Geigy T. Wissenschaftliche Tabellen.-Basel, 1960.
  • Gill P., Kuno M. Propertis of phrenic motoneurones.-J. Physiol. (Lond.), 1963, v. 168, p. 258-263.
  • Guazzi Maurizio. Sino-airtic reflexes and arterial pH, PO 2 and РCO 2 in wakefulness and sleep.-Am. J. Physiol., 1969, v. 217, p. 1623-1628.
  • Handler J. S., Orloff J. Hormonal regulation of the response of the toad to vasopressin.- Proc. Symp. on Cellular Processes in Growth. Development and Differentiation held at Bhabha Atomic Research Centr, 1971, p. 301- 318.
  • Heymans C., Neil E. Reflexogenic areas of the cardiovascular system.-London, Churchill, 1958.
  • Hori Т., Roth G., Yamamoto W. Respiratory sensitivity of rat brainstem surface to chemical stimuli.-J. appl. Physiol., 1970, v. 28, p. 721-723.
  • Hornbein Т., Severinghaus J. Carotid chemoreceptor response to hypoxin and acidosis in cats living at high altitude.-J. appl. Physiol., 1969, v. 27, p. 837-841.
  • Hugh J., Man S. Oh. Water electrolyte and acid-base metabolism: diagnosis and management.-Toronto, 1978.
  • Janacek K., Rybova R., Slavikova M. Independent-stimulation of sodium entry and sodium extrusion in frog urinary bladder by aldosterone.- Pfliig. Arch.. 1971, Bd 326, S. 316-323.
  • Joels N., Neil E. The influence of anoxia and hypercaphiy, separately and in combination on chemoreceptor impulse discharge. - J. Physiol. (Lond.), 1961, v. 155, p. 45-47.
  • Laborit H. La regulation metaboliques.-Paris, Masson, 1965.
  • Lambertsen C. Effects of oxagen at high partial pressure.-In: Handbook of physiology respiration.-Washington, 1965, v. 2, p. 1027-1035.
  • Leitner L., Liaubet M. Carotid body oxygen consuption of the cat in vitro.- Pfliisg. Arch., 1971, Bd 323, S. 315-322.
  • Lenfant C. Arterial-alveblar difference in Рсог during air and oxygen breathing.-J. appl. Physiol., 1966, v. 21 p. 1356-1359.
  • Lewis J., Buie R., Sovier S., Harrison T. Effect of posture and of congestion of head on sodium excretion in normal subjects.-Circulation, 1950, v. 2, p. 822-824.
  • Levinsky N. Noraldosterone influences on renal sodium transport.-Ann. N. Y. Acad. Sci., 1966, v. 139, part. 2, p. 295-296.
  • Leyssac P. Interarenal fuaction of angiotensin.- Fed. Proc., 1967, v. 26, p. 55- 57.
  • Maren T. Carbonic anhydrase: chemistry physiology andinhibition.-Physiol. Rev., 1967, v. 47, p. 595-598.
  • Matthews D., O"Connor W. The effect on blood and urine of the ingestion of sodium bicarbonate.-Quart. J. exp. Physiol., 1968, v. 53, p. 399-402.
  • Mills E., Edwards M. Stimulation of aortic and carotid chemoreceptors during carbon monoxide inhalation.-J. appl. Physiol., 1968, v. 25, p. 484-497.
  • Mitchell R., Loeschke H., Massion WSeveringhaus J. Respiratory responses mediated through superficial chemosensitive areas on the medulla.-J. appl. Physiol., 1963, v. 18, p. 523-529.
  • Nizet A., Lefebvre P., Crabbe J. Control by insulin of sodium, potassium and kidney.-Pfliig. Arch., 1971, v. 323, p. i I-20.
  • Passo S., Thornborough J., Rothballer A. Hepatic receptors in control of Sodium excretion in anesthetized cats.-Am. J. Physiol., 1973, v. 224, p. 373- 375.
  • Pitts R. Renal production excretion of ammonia.-Am. J. Med., 1964, v. 36, p. 720-724.
  • Rooth G. (Рут Г.) Кислотно-щелочное состояние в электролитный баланс: Пер. с англ.- М.: Медицина, 1978.
  • Santensanio F., Faloona G., Knochel J, Unger R. Evidence for a role of endogenous insulin and glucagon in the regulation of potasium homeostasis.-J. Lab. clin. Med., 1973, N 81, p. 809-817.
  • Severs W., Sammy-Long Daniels-Severs A. Angiotensin interaction with thirst mechanism.-Am. J. Physiol., 1974, v. 226, p. 340-347.
  • Silva P., Brown R., Epstein F. Adaption to potassium.-Kidney Int., 1977, v. 11, p. 466-475.
  • Smith H. Principles of renal physiology.-New York: Oxford, Univ. Press, 1956.
  • Stocking J. Potassium homeostasis.-Austral. N. Z. J. Med., 1977, v. 7, p. 66- 77.
  • Tannen B. Relationship of renal ammonia production and potassium homeostasis.-Kidney Int., 1977, v. 11, p. 453-465.
  • Verney E. Renal excretion of water and salt.-Lancet, 1957, v. 2, p. 7008.
  • Vesin P. Le metabolisme du potassium chez I’homme I Donnees de physiologie notmale.-Presse med., 1969, v. 77, p. 1571.
  • Weisberg H. Acid-base semantis a century of the tower of Babel.-U.S. Dep. Commer. Nat. Bur. Stand. Spec. Publ., 1977, N 450, p. 75-89.
  • Wiederholt M. Agulian S., Khuri R. Intracellular potassium in the distal tubule of the adrenalectomized and aldocterone treated rat.- Pfliig. Arch., 1974, Bd 347, S. 117-123.
  • Wiederholt М., Schoormans W., Hansen L., Behn C. Sodium conductance changes by aldosterone in the rat Kidney.-Pfliig. Arch., 1974, v. 348, p. 155- 165.
  • Winterstein H. Die Regulierung der Atmung durch das Blut. - Pfliig. Arch., 1911, Bd 138, S. 167-172.
  • Winterstein H. Die Entdeckung neuer Sinnesflaechen fuerdie chemische steu-erung fer Atmung. Naturwissenschaften, 1960, Bd 47, S. 99-103.
  • Woodburg D., Karler D. The role of carbon dioxide in the nervous system.- Anaesthesiology, 1960, v. 21, p. 686-690.
  • Wright S. Sites and mechanism of potassium transport along the renal tubule.-Kidney Int., 1977, v. 11, p. 415-432.
  • Wyke B. Brain function and metabolic disorders.-London, 1963.

  • Концентрация ионов водорода [Н+] в клетках и жидкостях определяет их кислотно-щелочное равновесие (КЩР). КЩР оценивают по величине рН - водородному показателю: рН - отрицательный десятичный логарифм молярной в среде.
    Реакция крови - слабощелочная: рН = 7,35-7,55 - одна из жёстких констант гомеостаза. Сдвиг рН на 0,3-0,4 смертелен.
    В организме образуются почти в 20 раз больше кислых продуктов, чем щелочных. В связи с этим необходимы системы нейтрализации избытка соединений с кислыми свойствами. Регуляция КЩР осуществляется как химическими механизмами, так и физиологическими.
    1. Химические механизмы регуляции протекают на молекулярном уровне. К ним относятся буферные системы крови и щелочной резерв.
    Буферные системы. Принцип действия буферных систем основан на замене сильной кислоты слабой, при диссоциации которых образуется меньше ионов Н+, и, следовательно, рН понижается в меньшей степени. Буферные системы крови более устойчивы к действию кислот, чем оснований.
    1.Гемоглобиновая буферная система. На ее долю приходится 75% буферной емкости цельной крови. Эта система включает восстановленный гемоглобин и калиевую соль восстановленного гемоглобина (ННb/КНb). Буферные свойства системы обусловлены тем, что КНb как соль слабой кислоты отдает ион К+ и присоединяет при этом ион Н+, образуя слабодиссоциированную кислоту:
    H+ + KHb = K+ + HHb
    Величина рН крови, притекающей к тканям, благодаря восстановленному гемоглобину, способному связывать СО2 и Н+-ионы, остается постоянной. В этих условиях ННb выполняет функции основания. В легких гемоглобин ведет себя как кислота (оксигемоглобин ННbО2 является более сильной кислотой, чем СО2), что предотвращает защелачивание крови.
    2. Карбонатная буферная система (H2CO3/NaHCO3) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCO3 диссоциирует на ионы Na+ и НСО3-. Если в кровь поступает кислота более сильная, чем угольная, то происходит обмен ионами Na+ с образованием слабодиссоциированной и легко растворимой угольной кислоты, что предотвращает повышение концентрации ионов Н+ в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на Н2О и СО2. Последний поступает в легкие и выделяется в окружающую среду. Если в кровь поступает основание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaНСО3) и воду, что опять-таки препятствует сдвигу рН в щелочную сторону.
    В цельной крови 75 % буферных свойств обеспечивает гемоглобиновая система, а в плазме - карбонатная.
    3. Фосфатная буферная система образована натрия дигидрофосфатом и натрия гидрофосфатом (NaH2PO4/Na2HPO4). Первое соединение ведет себя как слабая кислота, второе — как соль слабой кислоты. При увеличении уровня кислот в плазме крови увеличивается концентрация H2CO3 и уменьшается содержание NaHCO3:
    H2CO3 + Na2HPO4 = NaHCO3 + NaH2PO4
    В результате избыток угольной кислоты устраняется, а уровень NaHCO3 возрастает. Избыточное количество NaH2PO4 удаляется с мочой, благодаря чему соотношение NaH2PO4/Na2HPO4 не изменяется.
    Фосфатная буферная система способствует поддержанию карбонатной буферной системы.
    4. Белковая буферная система: белки - полимеры аминокислот СООН - R - NH3
    Белковая буферная система (белок-COOH/белок-COONa) - главный внутриклеточный буфер. Белки являются амфотерными соединениями и могут нейтрализовывать как кислоты, так и щёлочи (в кислой среде ведут себя как основания, а в основной — как кислоты).
    Наиболее мощные буферные системы у животных, биологически приспособленных к тяжёлой мышечной работе. В процессе обмена веществ в организме образуется больше кислотных продуктов, чем щелочных, поэтому в крови имеется запас щелочных веществ - щелочной резерв.
    Щелочной резерв крови - это сумма всех щелочных веществ крови, главным образом бикарбонатов натрия и калия. Величина щелочного резерва определяется по тому количеству СО2, которое может быть связано 100 мл крови при напряжении СО2, равному 40 мм рт. ст. - газометрический способ определения щелочного резерва крови. Титрометрический способ основан на определении кислотной емкости крови (см. Лабораторные методики).

    Величины щелочного резерва крови, определяемого титрометрическим и газометрическим способами

    Вид животного Щёлочной резерв, мг % Щёлочной резерв, мл СО2
    КРС 460- 540 55
    Овца 460- 520 48
    Лошадь 470- 620 57
    Собака - 50

    2. Физиологические механизмы регуляция КЩР включают сложные нейрогуморальные механизмы, затрагивающие функции различных систем органов (почки, потовые и слюнные железы, печень, поджелудочная железа, ЖКТ).
    Важная роль в поддержании постоянства рН крови отводится нервной регуляции. При этом преимущественно раздражаются хеморецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что рефлекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт и др., деятельность которых направлена на восстановление исходной величины рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н2РО4-. При сдвиге рН крови в щелочную сторону увеличивается выделение почками анионов НРО2- и НСО3-. Потовые железы способны выводить избыток молочной кислоты, а легкие — СО2.

    При некоторых физиологических и патологических реакциях возможно увеличение содержания в крови кислых или щелочных продуктов. Сдвиг КЩР в кислую сторону называется ацидозом, а в щелочную - алкалозом.
    По величине сдвига КЩР ацидозы и алкалозы бывают компенсированными и некомпенсированными:
    - компенсированный ацидоз или алкалоз - pH крови не изменяется, но уменьшается запас буферной ёмкости;
    - некомпенсированный ацидоз или алкалоз - уменьшается запас буферной ёмкости и изменяется реакция крови. Алкалозы встречаются реже.
    По механизмам возникновения ацидозы и алкалозы могут быть газовыми и негазовыми.
    Газовый ацидоз - развивается при затруднении дыхания, скученном содержании животных, содержании в плохо вентилируемых помещениях. В крови накапливается СО2, превращающийся в угольную кислоту.
    Негазовый, или метаболический ацидоз - при накоплении в крови не угольной, а других кислот - молочной, фосфорной и др. Развивается при:
    - тяжёлой мышечной работе,
    - при скармливании большого количества кислого силоса;
    - расстройстве жирового и отчасти белкового обмена, ведущего к накоплению в организме ацетоновых тел, что наблюдается при сахарном диабете, голодании, лихорадочных процессах;
    -- нарушении выделительной функции почек, ввиду чего уменьшается удаление из организма кислых фосфатов и в тканях задерживаются недоокисленные продукты;
    - сердечной недостаточности и патологии дыхательного аппарата, которые приводят к резким нарушениям окислительных процессов в организме и накоплению в нем недоокисленных продуктов.
    Газовый алкалоз - при усиленной вентиляции лёгких, кровь содержит меньше СО2 и защелачивается.
    Негазовый алкалоз связан с поступлением в организм большого количества щелочных солей, в этом случае увеличивается резервная щелочность крови;
    - при уменьшении содержания в тканях ионов хлора, что бывает при больших потерях желудочного сока, вызванных повторными рвотами.

    Читайте также: